class Self_Attn(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, activation=None): super(Self_Attn, self).__init__() # self.chanel_in = in_dim # self.activation = activation self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) # def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ # batch,通道数,宽,高 m_batchsize, C, width, height = x.size() # [1, 16, 32, 32] # 步骤1, 通过conv 得出q,k q = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N) torch.Size([1, 1024, 2]) k = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (*W*H) torch.Size([1, 2, 1024]) # 步骤1, 计算得出v v = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N torch.Size([1, 16, 1024]) # 步骤2, 矩阵的乘法 ,q,k进行相乘,得出特征图 # [batch_size,1024,2]*[batch_size,2,1024] energy = torch.bmm(q, k) # transpose check [1, 1024, 1024] # 特征图attention map,通过softmax attention = self.softmax(energy) # BX (N) X (N) torch.Size([1, 1024, 1024]) # 步骤3,v * 特征图= 注意力 # [1,16,1024] * [1,1024,1024]= torch.Size([1, 16, 1024]) out = torch.bmm(v, attention.permute(0, 2, 1)) # torch.Size([1, 16, 1024]) # 重新resize out = out.view(m_batchsize, C, width, height) # torch.Size([1, 16, 32, 32]) # 加上残差 out = self.gamma * out + x return out
时间: 2023-12-31 11:04:43 浏览: 165
这段代码实现了一个Self Attention Layer,其中包含三个卷积层,分别是query_conv、key_conv和value_conv,用于计算注意力的query、key和value。在前向传播中,首先通过query_conv和key_conv计算出query和key,然后计算出注意力矩阵,最后通过value_conv将注意力矩阵与输入特征图相乘得到注意力值,并加上残差。它可以用于图像、文本等任务中,用于提取输入中的重要信息。
相关问题
Transformer and Self-Attention Pytorch代码
以下是使用PyTorch实现Transformer和Self-Attention的示例代码:
## Self-Attention
```python
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, queries, mask):
# Get number of training examples
N = queries.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = queries.reshape(N, query_len, self.heads, self.head_dim)
# Transpose to get dimensions batch_size * self.heads * seq_len * self.head_dim
values = values.permute(0, 2, 1, 3)
keys = keys.permute(0, 2, 1, 3)
queries = queries.permute(0, 2, 1, 3)
# Calculate energy
energy = torch.matmul(queries, keys.permute(0, 1, 3, 2))
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
# Apply softmax to get attention scores
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=-1)
# Multiply attention scores with values
out = torch.matmul(attention, values)
# Concatenate and linearly transform output
out = out.permute(0, 2, 1, 3).reshape(N, query_len, self.heads * self.head_dim)
out = self.fc_out(out)
return out
```
## Transformer
```python
import torch
import torch.nn as nn
from torch.nn.modules.activation import MultiheadAttention
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion):
super(TransformerBlock, self).__init__()
self.attention = MultiheadAttention(embed_dim=embed_size, num_heads=heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion * embed_size),
nn.ReLU(),
nn.Linear(forward_expansion * embed_size, embed_size)
)
self.dropout = nn.Dropout(dropout)
def forward(self, value, key, query, mask):
attention_output, _ = self.attention(query, key, value, attn_mask=mask)
x = self.dropout(self.norm1(attention_output + query))
forward_output = self.feed_forward(x)
out = self.dropout(self.norm2(forward_output + x))
return out
class Encoder(nn.Module):
def __init__(self, src_vocab_size, embed_size, num_layers, heads, device, forward_expansion, dropout, max_length):
super(Encoder, self).__init__()
self.embed_size = embed_size
self.device = device
self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList([
TransformerBlock(embed_size, heads, dropout, forward_expansion) for _ in range(num_layers)
])
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
out = layer(out, out, out, mask)
return out
class DecoderBlock(nn.Module):
def __init__(self, embed_size, heads, forward_expansion, dropout, device):
super(DecoderBlock, self).__init__()
self.norm = nn.LayerNorm(embed_size)
self.attention = MultiheadAttention(embed_size, heads)
self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)
self.dropout = nn.Dropout(dropout)
def forward(self, x, value, key, src_mask, trg_mask):
attention_output, _ = self.attention(x, x, x, attn_mask=trg_mask)
query = self.dropout(self.norm(attention_output + x))
out = self.transformer_block(value, key, query, src_mask)
return out
class Decoder(nn.Module):
def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length):
super(Decoder, self).__init__()
self.embed_size = embed_size
self.device = device
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList([
DecoderBlock(embed_size, heads, forward_expansion, dropout, device) for _ in range(num_layers)
])
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_out, src_mask, trg_mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
x = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
x = layer(x, enc_out, enc_out, src_mask, trg_mask)
out = self.fc_out(x)
return out
```
这些代码可以用于实现Transformer和Self-Attention模型。但这只是示例,你需要根据你的数据和任务来调整这些代码中的各种超参数和结构。
可以设置一个注意力机制(attention mechansim)来学习对应的权重向量Wc,该机制是从一个具有三个全连接层的DNN中获得的吗,python怎么实现
注意力机制(Attention Mechanism)是一种深度学习中的重要技术,用于处理序列数据,比如自然语言处理任务。它允许模型在处理输入时动态地赋予每个元素不同的权重,而不是简单地平均所有信息。这种机制通常不是直接从一个具有三个全连接层的DNN(密集连接神经网络)内生成的,而是作为单独的一个模块插入到DNN架构中。
在Python中,如使用TensorFlow或PyTorch等库,你可以这样实现:
1. TensorFlow:
```python
import tensorflow as tf
class AttentionLayer(tf.keras.layers.Layer):
def __init__(self, units, **kwargs):
super(AttentionLayer, self).__init__(**kwargs)
self.Wc = tf.Variable(tf.random.truncated_normal(shape=(units, 1)), name='weight_vector') # 初始化权重矩阵
self.dense_1 = tf.keras.layers.Dense(units, activation='relu')
self.dense_2 = tf.keras.layers.Dense(units)
def call(self, inputs, previous_attention_weights=None):
# 这里假设inputs是经过前几层处理后的张量
context_vector = self.dense_1(inputs)
attention_scores = tf.reduce_sum(context_vector * self.Wc, axis=1) # 计算得分
if previous_attention_weights is not None:
attention_scores += previous_attention_weights
attention_weights = tf.nn.softmax(attention_scores, axis=1) # 归一化
context_vector = tf.expand_dims(attention_weights, -1) * inputs # 加权求和
return context_vector, attention_weights
```
2. PyTorch:
```python
import torch
from torch import nn
class AttentionLayer(nn.Module):
def __init__(self, units):
super().__init__()
self.fc1 = nn.Linear(units, units)
self.fc2 = nn.Linear(units, 1)
self.Wc = nn.Parameter(torch.randn(1, units))
def forward(self, x, prev_attn_weights=None):
context = torch.relu(self.fc1(x))
scores = torch.matmul(context, self.Wc.t()) # 计算得分
if prev_attn_weights is not None:
scores += prev_attn_weights.unsqueeze(1)
attn_weights = F.softmax(scores, dim=1)
weighted_input = torch.bmm(attn_weights.unsqueeze(1), x.unsqueeze(2)).squeeze(1) # 加权求和
return weighted_input, attn_weights
```
在这两个例子中,我们创建了一个自定义的注意力层,包含全连接层和一个权重向量。在`forward`函数中,我们计算注意力分数并应用softmax归一化。
阅读全文