pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.soutput, target, weight=self.weight) 报错:Traceback (most recent call last): File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 279, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/utils.py", line 621, in forward index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1) RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1 帮我看看如何修改
时间: 2024-04-03 12:36:32 浏览: 138
根据你提供的代码,可以看到报错信息来自于 LDAMLoss 类的 forward 函数中的 index.scatter 函数。这个函数的作用是将 target 中的每个元素在 index 中对应的位置上设为 1,其他位置设为 0。但是报错信息显示 index 的形状是 [112, 1],而 LDAMLoss 模型的输出 output 的形状是 [16, 7],因此 index 与 output 的形状不匹配,导致了这个错误。
为了解决这个问题,你需要检查一下你的代码,看看是否有错误的数据维度或者参数传递。你可以尝试在 forward 函数中添加一些打印语句,输出 index 和 target 的形状,以及其他相关的参数信息,以便更好地理解问题所在。另外,你也可以检查一下你的模型输出和标签的形状是否匹配,以及数据加载器是否正确地加载数据。
相关问题
pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or _global_forward_hooks or _global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错:Traceback (most recent call last): File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 279, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/utils.py", line 621, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index.
看起来问题出在 `LDAMLoss` 中的 `scatter_()` 函数上。根据报错信息,`scatter_()` 期望的 `dtype` 是 `int64`,但是 `target` 的 `dtype` 不是,导致了错误。你可以尝试在 `LDAMLoss` 中将 `target` 的 `dtype` 转换为 `torch.int64`,例如:
```
index.scatter_(1, target.data.view(-1, 1).type(torch.int64), 1)
```
这样应该可以解决这个问题。
true 12271 766 Traceback (most recent call last): File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 279, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/utils.py", line 621, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index.
这是一个出错的 traceback,看起来是在使用 PyTorch 进行模型训练时出现的问题。具体地,代码在执行 `index.scatter_(1, target.data.view(-1, 1), 1)` 时,发现 `target` 的数据类型不是 int64,导致了 `scatter_()` 函数的出错。可能需要检查一下代码中 `target` 的数据类型是否正确。
阅读全文