matlab最小二乘法求解线性方程组
时间: 2023-09-20 10:06:44 浏览: 256
hyperFcls_最小二乘法求解非线性方程_
在MATLAB中,可以使用以下方法来使用最小二乘法求解线性方程组:
假设有一个线性方程组Ax=b,其中A是m×n的矩阵,m>n,b是m×1的常数向量。
1. 使用MATLAB中的“\”运算符来求解最小二乘解,即x=pinv(A)*b,其中pinv(A)是A的伪逆矩阵。
例如,假设我们要求解以下线性方程组的最小二乘解:
x1 + 2x2 + 3x3 = 1
4x1 + 5x2 + 6x3 = 2
7x1 + 8x2 + 10x3 = 3
可以使用以下代码:
A = [1 2 3; 4 5 6; 7 8 10];
b = [1; 2; 3];
x = pinv(A)*b;
2. 另一种方法是使用MATLAB中的“lsqnonneg”函数来求解非负最小二乘解。
例如,假设我们要求解以下线性方程组的非负最小二乘解:
x1 + 2x2 + 3x3 = 1
4x1 + 5x2 + 6x3 = 2
7x1 + 8x2 + 10x3 = 3
可以使用以下代码:
A = [1 2 3; 4 5 6; 7 8 10];
b = [1; 2; 3];
x = lsqnonneg(A,b);
注意,使用“lsqnonneg”函数求解的解是非负的,即x的每个元素都大于等于零。
阅读全文