写一个放在CNN里的MI互信息匹配算法,本算法用于计算两张图片匹配的MI数值,每epoch计算一次
时间: 2024-02-29 16:51:52 浏览: 75
好的,这是一个比较复杂的算法,需要一些时间来编写。以下是我编写的代码,希望能够帮到你:
```python
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
# 定义MI互信息匹配层
class MILayer(layers.Layer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def call(self, inputs):
# 获取输入
x1, x2 = inputs
# 将输入转换为概率分布
p1 = tf.nn.softmax(x1, axis=-1)
p2 = tf.nn.softmax(x2, axis=-1)
# 计算互信息
mi = tf.reduce_sum(p1 * tf.math.log(tf.clip_by_value(p1 / (tf.reduce_sum(p1, axis=-1, keepdims=True) * tf.reduce_sum(p2, axis=-2, keepdims=True)), 1e-8, 1.0)), axis=-1)
# 返回结果
return mi
# 定义模型
class CNN_MI(tf.keras.Model):
def __init__(self):
super().__init__()
# 定义卷积层
self.conv1 = layers.Conv2D(32, (3, 3), activation='relu')
self.conv2 = layers.Conv2D(64, (3, 3), activation='relu')
self.conv3 = layers.Conv2D(128, (3, 3), activation='relu')
# 定义全连接层
self.fc1 = layers.Dense(128, activation='relu')
self.fc2 = layers.Dense(64, activation='relu')
self.fc3 = layers.Dense(32, activation='relu')
# 定义输出层
self.out = layers.Dense(2, activation='softmax')
# 定义MI互信息匹配层
self.mi_layer = MILayer()
def call(self, inputs):
# 获取输入
x1, x2 = inputs
# 第一层卷积
x1 = self.conv1(x1)
x2 = self.conv1(x2)
# 第二层卷积
x1 = self.conv2(x1)
x2 = self.conv2(x2)
# 第三层卷积
x1 = self.conv3(x1)
x2 = self.conv3(x2)
# 展开成一维向量
x1 = layers.Flatten()(x1)
x2 = layers.Flatten()(x2)
# 全连接层
x1 = self.fc1(x1)
x2 = self.fc1(x2)
x1 = self.fc2(x1)
x2 = self.fc2(x2)
x1 = self.fc3(x1)
x2 = self.fc3(x2)
# 输出层
out1 = self.out(x1)
out2 = self.out(x2)
# 计算互信息
mi = self.mi_layer([out1, out2])
# 返回结果
return mi
# 定义数据生成器
def data_generator(batch_size=32):
while True:
# 随机生成两张图片
x1 = np.random.random((batch_size, 28, 28, 1))
x2 = np.random.random((batch_size, 28, 28, 1))
# 随机生成标签
y = np.random.randint(2, size=batch_size)
# 返回数据
yield [x1, x2], y
# 训练模型
model = CNN_MI()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(data_generator(), epochs=10, steps_per_epoch=100)
```
这个模型包含了三层卷积层,三层全连接层和一个输出层。其中,输出层的输出经过了一个MI互信息匹配层计算得出。数据生成器会不断生成两张随机图片和随机标签,用于模型的训练。
阅读全文