写一段gan神经网络代码
时间: 2023-11-06 12:07:18 浏览: 153
以下是一个简单的GAN神经网络的代码,用于生成手写数字图像:
```python
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten
from keras.layers import BatchNormalization, Activation, Conv2DTranspose
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.datasets import mnist
# Load the dataset
(X_train, _), (_, _) = mnist.load_data()
# Normalize the dataset to [-1, 1]
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
# Define the generator model
generator = Sequential()
generator.add(Dense(256, input_shape=(100,)))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(512))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(1024))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(784, activation='tanh'))
generator.add(Reshape((28, 28, 1)))
# Define the discriminator model
discriminator = Sequential()
discriminator.add(Flatten(input_shape=(28, 28, 1)))
discriminator.add(Dense(512))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(alpha=0.2))
discriminator.add(Dense(1, activation='sigmoid'))
# Define the GAN model
z = Input(shape=(100,))
img = generator(z)
validity = discriminator(img)
gan = Model(z, validity)
# Compile the discriminator
discriminator.compile(loss='binary_crossentropy',
optimizer=Adam(lr=0.0002, beta_1=0.5),
metrics=['accuracy'])
# Compile the GAN
gan.compile(loss='binary_crossentropy',
optimizer=Adam(lr=0.0002, beta_1=0.5))
# Train the GAN
epochs = 1000
batch_size = 128
for epoch in range(epochs):
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_imgs = X_train[idx]
# Generate a batch of fake images
noise = np.random.normal(0, 1, (batch_size, 100))
fake_imgs = generator.predict(noise)
# Train the discriminator
d_loss_real = discriminator.train_on_batch(real_imgs, np.ones((batch_size, 1)))
d_loss_fake = discriminator.train_on_batch(fake_imgs, np.zeros((batch_size, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# Train the generator
g_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
# Print the progress
print(f"Epoch {epoch+1}/{epochs} | D loss: {d_loss[0]:.4f} | D accuracy: {d_loss[1]*100:.2f}% | G loss: {g_loss:.4f}")
```
这段代码使用了Keras框架,包括一个生成器模型、一个判别器模型和一个GAN模型。它的主要思想是通过训练判别器来区分真实图像和生成图像,并通过训练生成器来生成更逼真的图像。在每个epoch中,我们随机选择一批真实图像和一批噪声,然后使用这些数据来训练判别器和生成器。
阅读全文