Linear后面接relu
时间: 2023-07-27 15:30:56 浏览: 155
在神经网络中,将`Linear`层和`ReLu`激活函数层组合使用,是一种常见的神经网络构建方法,通常被称为`ReLU网络`。`Linear`层用于实现线性变换,`ReLU`激活函数则用于对线性变换后的输出进行非线性变换。这种非线性变换能够增加神经网络的表达能力,从而提高神经网络的性能。在实际应用中,`ReLU`网络已经被广泛应用于图像分类、目标检测、自然语言处理等领域。
相关问题
使用paddle将以下LeNet代码改为ResNet网络模型class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() # 创建卷积和池化层块,每个卷积层使用relu激活函数,后面跟着一个2x2的池化 self.conv1 = paddle.nn.Conv2D(3, 32, 3, 1, 1) self.relu1 = paddle.nn.ReLU() self.max_pool1 = paddle.nn.MaxPool2D(2, 2) self.conv2 = paddle.nn.Conv2D(32, 64, 3, 1, 1) self.relu2 = paddle.nn.ReLU() self.max_pool2 = paddle.nn.MaxPool2D(2, 2) self.avg_pool = AdaptiveAvgPool2D(1) self.linear= paddle.nn.Linear(64, 2) # 网络的前向计算过程 def forward(self, x): x = self.max_pool1(self.relu1(self.conv1(x))) x = self.max_pool2(self.relu2(self.conv2(x))) x = self.avg_pool(x) x = paddle.reshape(x, [x.shape[0],-1]) x = self.linear(x) return x paddle.Model(LeNet()).summary((-1,3,256,256))
以下是将LeNet代码改为ResNet网络模型的代码:
```
import paddle.nn.functional as F
class ResNet(paddle.nn.Layer):
def __init__(self, num_classes=2):
super(ResNet, self).__init__()
# 第一个卷积层,输出通道数为64,卷积核大小为7x7,步长为2,padding为3
self.conv1 = paddle.nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
self.bn1 = paddle.nn.BatchNorm2D(64)
self.relu = paddle.nn.ReLU()
self.max_pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
# ResNet的主体部分,包括4个残差块
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
# 全局平均池化层
self.avg_pool = paddle.nn.AdaptiveAvgPool2D((1, 1))
# 分类器
self.fc = paddle.nn.Linear(512, num_classes)
def _make_layer(self, channels, blocks, stride=1):
layers = []
# 下采样,对输入进行降维
downsample = None
if stride != 1 or self.in_channels != channels:
downsample = paddle.nn.Sequential(
paddle.nn.Conv2D(self.in_channels, channels, kernel_size=1, stride=stride, bias_attr=False),
paddle.nn.BatchNorm2D(channels)
)
layers.append(ResidualBlock(self.in_channels, channels, stride, downsample))
self.in_channels = channels
for _ in range(1, blocks):
layers.append(ResidualBlock(channels, channels))
return paddle.nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.max_pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avg_pool(x)
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
class ResidualBlock(paddle.nn.Layer):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn1 = paddle.nn.BatchNorm2D(out_channels)
self.relu = paddle.nn.ReLU()
self.conv2 = paddle.nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False)
self.bn2 = paddle.nn.BatchNorm2D(out_channels)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
paddle.Model(ResNet()).summary((-1,3,256,256))
```
这里我们定义了一个ResNet网络模型,包括一个卷积层,一个最大池化层,4个残差块,一个全局平均池化层和一个分类器。其中,每个残差块包含两个卷积层和一个跳跃连接,卷积层的输出通道数和步长根据网络深度不同而不同。在模型前向传播过程中,我们先使用一次卷积和池化操作,然后将特征图输入到各个残差块中,最后进行全局平均池化和分类。
解释这段代码def __init__(self): super(Discriminator, self).__init__() self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes) self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), # TODO: 添加最后一个线性层,最终输出为一个实数 nn.Linear(512, 1) )
这是一个用于生成对抗网络(GAN)中的判别器(Discriminator)的初始化函数。GAN是一种机器学习模型,由一个生成器(Generator)和一个判别器组成,旨在生成与真实数据相似的数据。在GAN中,判别器负责判断输入的数据(真实数据或生成器生成的数据)是否为真实数据。
在这个初始化函数中,首先调用了父类的初始化函数 `super(Discriminator, self).__init__()`,之后定义了一个大小为 `opt.n_classes` 的嵌入层 `self.label_embedding`,用于将标签信息嵌入到模型中。
接下来,使用了一个包含多个线性层和激活函数的序列模型 `nn.Sequential()`,其中第一个线性层的输入大小为 `(opt.n_classes + int(np.prod(img_shape)))`,其中 `opt.n_classes` 表示标签数量,`np.prod(img_shape)` 表示真实数据的形状。后面的线性层和激活函数用于提取和学习输入数据的特征。
最后一个线性层的输出大小为1,用于输出一个实数,表示输入的数据是否为真实数据。此处的 TODO 提示需要添加一个最后一个线性层,是因为在这个代码段中,最后一个线性层还没有被添加。
阅读全文