帮我解释以下代码:from sklearn.cluster import AgglomerativeClustering from scipy.cluster.hierarchy import dendrogram from matplotlib import pyplot as plt import numpy as np X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]] def plot_dendrogram(model, **kwargs): counts = np.zeros(model.children_.shape[0]) n_samples = len(model.labels_) for i, merge in enumerate(model.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 else: current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack( [model.children_, model.distances_, counts] ).astype(float) dendrogram(linkage_matrix, **kwargs) model = AgglomerativeClustering(n_clusters=None, distance_threshold=0, linkage='average') model.fit(X) plot_dendrogram(model) plt.show()
时间: 2024-03-15 11:42:45 浏览: 155
Python错题本:from scipy.misc import imread 报错cannot import name imread 的解决方案
这段代码演示了如何使用层次聚类算法对数据进行聚类,并使用树状图展示聚类结果。
具体来说,代码中首先导入了需要用到的库,包括了sklearn的AgglomerativeClustering,scipy的dendrogram和matplotlib的pyplot。然后定义了一个列表X,其中包含了8个数字。接下来定义了一个函数plot_dendrogram,用于绘制树状图。在函数中,首先计算了每个聚类簇的样本数,然后构造了一个连接矩阵,将每个聚类簇的父子关系、距离以及样本数放在一起。最后调用dendrogram函数,传入连接矩阵和其他参数,即可绘制树状图。
接着,通过使用AgglomerativeClustering算法,将X数据集进行聚类。其中n_clusters=None表示不指定聚类的个数,distance_threshold=0表示聚类时不考虑距离阈值,linkage='average'表示使用平均链接法进行聚类。
最后,调用plot_dendrogram函数,传入已经训练好的聚类模型,即可绘制树状图展示聚类结果。最后调用plt.show()将图像显示出来。
阅读全文