请用pytorch写出SparseAttention的代码
时间: 2023-08-31 18:33:57 浏览: 173
### 回答1:
好的,以下是一个简单的SparseAttention的代码实现示例:
```python
import torch
import torch.nn as nn
class SparseAttention(nn.Module):
def __init__(self, input_size, output_size, num_heads, dropout=0.1):
super(SparseAttention, self).__init__()
self.num_heads = num_heads
self.head_size = output_size // num_heads
self.query = nn.Linear(input_size, output_size)
self.key = nn.Linear(input_size, output_size)
self.value = nn.Linear(input_size, output_size)
self.dropout = nn.Dropout(dropout)
self.output = nn.Linear(output_size, output_size)
def forward(self, inputs):
batch_size, seq_len, input_size = inputs.size()
# Compute query, key, and value
q = self.query(inputs)
k = self.key(inputs)
v = self.value(inputs)
# Reshape query, key, and value for multi-head attention
q = q.view(batch_size, seq_len, self.num_heads, self.head_size)
k = k.view(batch_size, seq_len, self.num_heads, self.head_size)
v = v.view(batch_size, seq_len, self.num_heads, self.head_size)
# Compute attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / self.head_size**0.5
# Compute sparse attention scores
mask = torch.ones(batch_size, seq_len, seq_len)
for i in range(seq_len):
start = max(0, i - 2)
end = min(seq_len, i + 3)
mask[:, i, start:end] = 0
scores.masked_fill_(mask == 1, float('-inf'))
# Apply softmax to get attention probabilities
attn_probs = nn.functional.softmax(scores, dim=-1)
attn_probs = self.dropout(attn_probs)
# Apply attention to value
attn_output = torch.matmul(attn_probs, v)
attn_output = attn_output.view(batch_size, seq_len, self.num_heads * self.head_size)
# Apply output layer
output = self.output(attn_output)
output = self.dropout(output)
return output
```
其中,`SparseAttention`类包含了一个稀疏注意力机制,输入为一个三维张量`(batch_size, seq_len, input_size)`,输出为一个三维张量`(batch_size, seq_len, output_size)`。具体实现过程如下:
1. 首先,使用三个线性层(`query`、`key`和`value`)将输入转换为查询、键和值。
2. 将查询、键和值分别重塑为`(batch_size, seq_len, num_heads, head_size)`的形状,以进行多头注意力计算。
3. 计算注意力得分,并使用一个掩码矩阵来实现稀疏注意力机制。该掩码矩阵是一个形状为`(batch_size, seq_len, seq_len)`的张量,其中每个元素为0或1,表示是否需要忽略对应位置的元素。在本例中,掩码矩阵的每一行只允许与当前位置距离不超过2的元素互动,从而实现了稀疏注意力。
4. 将注意力得分应用softmax函数,得到注意力概率,并使用dropout进行正则化。
5. 使用注意力概率和值计算注意力输出,并将其重塑为`(batch_size, seq_len, output_size)`的形状。
6. 最后,使用一个线性层和dropout进行最终输出。
### 回答2:
Sure! 下面是使用PyTorch编写的SparseAttention代码:
```python
import torch
import torch.nn.functional as F
class SparseAttention(torch.nn.Module):
def __init__(self, hidden_size, num_heads, dropout_rate=0.1):
super(SparseAttention, self).__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.dropout_rate = dropout_rate
self.qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.dropout = torch.nn.Dropout(dropout_rate)
self.softmax = torch.nn.Softmax(dim=-1)
def forward(self, input):
qkv = self.qkv(input) # (batch_size, seq_len, hidden_size * 3)
queries, keys, values = torch.chunk(qkv, 3, dim=-1)
queries = queries.view(-1, self.num_heads, queries.size(1), queries.size(2) // self.num_heads)
keys = keys.view(-1, self.num_heads, keys.size(1), keys.size(2) // self.num_heads)
values = values.view(-1, self.num_heads, values.size(1), values.size(2) // self.num_heads)
scores = torch.matmul(queries, keys.transpose(-2, -1)) / (self.hidden_size // self.num_heads)**0.5
attn_probs = self.softmax(scores)
attn_probs = self.dropout(attn_probs)
sparse_weighted_values = torch.matmul(attn_probs, values)
sparse_weighted_values = sparse_weighted_values.view(-1, sparse_weighted_values.size(2), self.hidden_size)
output = sparse_weighted_values.sum(dim=1)
return output
```
这段代码实现了SparseAttention模块,它包括一个线性层用于计算qkv,一个Softmax层用于计算注意力权重,以及一个Dropout层用于防止过拟合。在forward方法中,将输入的qkv进行分割并重新reshape,然后进行注意力计算和加权求和,最后输出结果。
希望这能够帮到你!
### 回答3:
import torch
import torch.nn as nn
from torch.nn import functional as F
class SparseAttention(nn.Module):
def __init__(self, d_model, n_heads):
super(SparseAttention, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
# Query projection
self.query = nn.Linear(d_model, d_model * n_heads)
# Key projection
self.key = nn.Linear(d_model, d_model * n_heads)
# Value projection
self.value = nn.Linear(d_model, d_model * n_heads)
def forward(self, input):
batch_size, seq_len, _ = input.size()
# Calculate query, key, and value
query = self.query(input).view(batch_size, seq_len, self.n_heads, self.d_model)
key = self.key(input).view(batch_size, seq_len, self.n_heads, self.d_model)
value = self.value(input).view(batch_size, seq_len, self.n_heads, self.d_model)
# Calculate attention scores
scores = torch.einsum('bqhd,bkhd->bhqk', query, key) / (self.d_model ** 0.5)
attn_weights = F.softmax(scores, dim=3)
# Apply attention weights to value
output = torch.einsum('bhqk,bkhd->bqhd', attn_weights, value)
# Flatten and concatenate attention head outputs
output = output.view(batch_size, seq_len, self.n_heads * self.d_model)
return output
# Usage example
input = torch.randn(2, 5, 10) # Random input tensor with shape (batch_size, seq_len, d_model)
sparse_attention_layer = SparseAttention(d_model=10, n_heads=2) # Create sparse attention layer
output = sparse_attention_layer(input) # Perform forward pass to obtain output
print(output.shape) # Output shape: (batch_size, seq_len, n_heads * d_model)
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)