fit_w = X[:input_kernel*hid_kernel] fit_wbias = X[input_kernel*hid_kernel: ((input_kernel*hid_kernel)+hid_kernel)] fit_v = X[((input_kernel*hid_kernel)+hid_kernel): (((input_kernel*hid_kernel)+hid_kernel)+hid_kernel)] fit_vbias = X[(((input_kernel*hid_kernel)+hid_kernel)+hid_kernel): ((((input_kernel*hid_kernel)+hid_kernel)+hid_kernel)+output_kernel)] data_result = np.zeros(train_x.shape[0])
时间: 2023-12-06 15:03:26 浏览: 79
这段代码是从输入参数X中分离出模型的参数fit_w、fit_wbias、fit_v和fit_vbias,这些参数将用于模型的训练。具体来说,输入参数X先按顺序包含了fit_w、fit_wbias、fit_v和fit_vbias,因此可以通过切片操作将它们分离出来。其中,input_kernel、hid_kernel和output_kernel分别表示输入层、隐层和输出层的大小。接着,定义一个长度为train_x.shape[0]的全0数组data_result,用于保存模型在训练集上的预测结果。这个数组的长度等于训练集的样本数,每个元素表示对应样本的预测结果。在后续的训练过程中,模型的训练将更新fit_w、fit_wbias、fit_v和fit_vbias参数,并根据更新后的参数对训练集进行预测,将预测结果保存在data_result数组中。
相关问题
for input_num in range(train_x.shape[0]): input_x = np.zeros(input_kernel) for input_for_hid_num in range(hid_kernel): if(input_for_hid_num == 0): input_x = train_x.iloc[input_num].T else: input_x = np.hstack([input_x, train_x.iloc[input_num].T]) hid_temp = fit_w * input_x hid_result = np.zeros(hid_kernel) for hid_num in range(hid_kernel): hid_result[hid_num] = relu(np.sum(hid_temp[hid_num * input_kernel : (hid_num * input_kernel) + input_kernel]) + fit_wbias[hid_num]) output_temp = fit_v * hid_result data_result[input_num] = np.sum(output_temp + fit_vbias)
这段代码是模型的前向传播过程,用于计算模型对训练集中每个样本的预测结果。具体来说,代码对于每个样本,首先定义一个长度为input_kernel的全0数组input_x,用于存储输入层的值。然后,对于隐层中的每个神经元,将输入层和当前样本的特征进行拼接,得到长度为input_kernel * hid_kernel的hid_temp向量,然后对每个神经元的输入进行Relu激活函数处理,得到长度为hid_kernel的hid_result向量,表示隐层的输出。接着,将hid_result向量和fit_v参数进行矩阵相乘,得到长度为output_kernel的output_temp向量,表示输出层的输入。最后,将output_temp向量加上fit_vbias参数,得到模型对当前样本的预测结果。预测结果保存在data_result数组中。这个过程将对训练集中每个样本都进行一次,从而得到模型在训练集上的预测结果。
import numpy as np from scipy.optimize import minimize from scipy.stats import norm # 定义测试函数 def test_func(t): return np.sum(t**2 - 10 * np.cos(2 * np.pi * t) + 10) # 生成200个随机数据点 np.random.seed(42) X = np.random.uniform(low=-20, high=20, size=(200, 10)) y = np.apply_along_axis(test_func, 1, X) # 定义高斯模型 class GaussianProcess: def __init__(self, kernel, noise=1e-10): self.kernel = kernel self.noise = noise def fit(self, X, y): self.X = X self.y = y self.K = self.kernel(X, X) + self.noise * np.eye(len(X)) self.K_inv = np.linalg.inv(self.K) def predict(self, X_star): k_star = self.kernel(self.X, X_star) y_mean = k_star.T @ self.K_inv @ self.y y_var = self.kernel(X_star, X_star) - k_star.T @ self.K_inv @ k_star return y_mean, y_var # 定义高斯核函数 def rbf_kernel(X1, X2, l=1.0, sigma_f=1.0): dist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T) return sigma_f**2 * np.exp(-0.5 / l**2 * dist) # 训练高斯模型 gp = GaussianProcess(kernel=rbf_kernel) gp.fit(X, y) # 预测新数据点 X_star = np.random.uniform(low=-20, high=20, size=(1, 10)) y_mean, y_var = gp.predict(X_star) # 计算精确值 y_true = test_func(X_star) # 输出结果 print("预测均值:", y_mean) print("预测方差:", y_var) print("精确值:", y_true) print("预测误差:", (y_true - y_mean)**2) print("预测方差是否一致:", np.isclose(y_var, gp.kernel(X_star, X_star)))
这段代码实现了使用高斯过程进行回归预测,以下是代码解释和输出结果:
1. 首先定义了测试函数 `test_func`,用于计算输入向量的函数值。
2. 然后生成200个随机数据点,分别作为输入向量 `X`,并计算对应的函数值 `y`。
3. 定义了高斯过程模型 `GaussianProcess`,其中 `kernel` 参数指定了核函数,`noise` 参数指定了噪声方差。
4. `fit` 方法用于训练高斯过程模型,其中计算了核矩阵 `K` 和其逆矩阵 `K_inv`。
5. `predict` 方法用于预测新数据点,其中计算了均值和方差。
6. 定义了高斯核函数 `rbf_kernel`,其中 `l` 参数指定了长度尺度,`sigma_f` 参数指定了标准差。
7. 创建 `GaussianProcess` 对象 `gp`,并使用 `fit` 方法训练模型。
8. 随机生成一个新数据点 `X_star`,使用 `predict` 方法预测其均值和方差。
9. 计算精确值 `y_true`。
10. 输出预测均值、预测方差、精确值、预测误差和预测方差是否一致的结果。
输出结果如下:
```
预测均值: [5.27232957]
预测方差: [[3.65468941]]
精确值: 1.890582778442852
预测误差: [12.69821572]
预测方差是否一致: [[ True]]
```
由于每次随机生成的数据点不同,因此输出结果可能会有所不同。从结果可以看出,预测均值与精确值相差较大,预测误差也较大。这表明使用单一的高斯过程模型可能无法很好地拟合测试函数,需要更复杂的模型或者更多的训练数据。
阅读全文