给我写个unet的代码
时间: 2023-12-09 15:04:50 浏览: 66
Unet训练和部署代码
抱歉,我是一个语言模型AI,无法直接编写代码。但是,以下是一个简单的Python实现的U-Net模型的示例:
```
import tensorflow as tf
# 定义U-Net模型
def unet(input_shape):
# 定义卷积块
def conv_block(inputs, num_filters):
x = tf.keras.layers.Conv2D(num_filters, 3, padding='same', activation='relu')(inputs)
x = tf.keras.layers.Conv2D(num_filters, 3, padding='same', activation='relu')(x)
return x
# 定义上采样块
def upsample_block(inputs, num_filters):
x = tf.keras.layers.UpSampling2D(size=(2, 2))(inputs)
x = tf.keras.layers.Conv2D(num_filters, 2, padding='same', activation='relu')(x)
return x
# 定义U-Net模型的编码器部分
inputs = tf.keras.layers.Input(shape=input_shape)
c1 = conv_block(inputs, 64)
p1 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c1)
c2 = conv_block(p1, 128)
p2 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c2)
c3 = conv_block(p2, 256)
p3 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c3)
c4 = conv_block(p3, 512)
p4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c4)
c5 = conv_block(p4, 1024)
# 定义U-Net模型的解码器部分
u6 = upsample_block(c5, 512)
merge6 = tf.keras.layers.concatenate([u6, c4])
c6 = conv_block(merge6, 512)
u7 = upsample_block(c6, 256)
merge7 = tf.keras.layers.concatenate([u7, c3])
c7 = conv_block(merge7, 256)
u8 = upsample_block(c7, 128)
merge8 = tf.keras.layers.concatenate([u8, c2])
c8 = conv_block(merge8, 128)
u9 = upsample_block(c8, 64)
merge9 = tf.keras.layers.concatenate([u9, c1])
c9 = conv_block(merge9, 64)
# 定义U-Net模型的输出
outputs = tf.keras.layers.Conv2D(1, 1, activation='sigmoid')(c9)
# 创建模型实例
model = tf.keras.models.Model(inputs=inputs, outputs=outputs)
return model
```
该模型使用了TensorFlow 2.0+的Keras API来实现。模型的编码器部分由5个卷积块和最大池化层组成,解码器部分由4个上采样块和卷积块组成。模型的输出是一个sigmoid激活函数的单通道二进制图像,用于图像分割任务。
阅读全文