用pcl库,进行道路可行驶区域检测,得到道路边界、车道线,代码
时间: 2024-05-08 14:15:26 浏览: 105
基于计算机视觉的车道线检测(完整源码)
以下是基于PCL库进行道路可行驶区域检测的代码示例:
```cpp
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/visualization/pcl_visualizer.h>
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> PointCloud;
int main(int argc, char **argv)
{
// 读取点云数据
PointCloud::Ptr cloud(new PointCloud);
pcl::io::loadPCDFile<PointT>("input.pcd", *cloud);
// 下采样
pcl::VoxelGrid<PointT> voxel_filter;
voxel_filter.setLeafSize(0.1, 0.1, 0.1);
PointCloud::Ptr filtered_cloud(new PointCloud);
voxel_filter.setInputCloud(cloud);
voxel_filter.filter(*filtered_cloud);
// 滤波
pcl::PassThrough<PointT> pass;
pass.setFilterFieldName("z");
pass.setFilterLimits(0, 1.5);
pass.setInputCloud(filtered_cloud);
PointCloud::Ptr pass_filtered_cloud(new PointCloud);
pass.filter(*pass_filtered_cloud);
// 平面分割
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
pcl::SACSegmentation<PointT> seg;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setMaxIterations(1000);
seg.setDistanceThreshold(0.01);
seg.setInputCloud(pass_filtered_cloud);
seg.segment(*inliers, *coefficients);
// 提取地面点
pcl::ExtractIndices<PointT> extract;
extract.setInputCloud(pass_filtered_cloud);
extract.setIndices(inliers);
extract.setNegative(false);
PointCloud::Ptr ground_cloud(new PointCloud);
extract.filter(*ground_cloud);
// 提取非地面点
extract.setNegative(true);
PointCloud::Ptr non_ground_cloud(new PointCloud);
extract.filter(*non_ground_cloud);
// 计算法向量
pcl::NormalEstimation<PointT, pcl::Normal> ne;
pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>);
tree->setInputCloud(non_ground_cloud);
ne.setInputCloud(non_ground_cloud);
ne.setSearchMethod(tree);
ne.setKSearch(20);
ne.compute(*normals);
// 聚类
pcl::search::KdTree<PointT>::Ptr cluster_tree(new pcl::search::KdTree<PointT>);
cluster_tree->setInputCloud(non_ground_cloud);
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<PointT> ec;
ec.setClusterTolerance(0.2);
ec.setMinClusterSize(100);
ec.setMaxClusterSize(10000);
ec.setSearchMethod(cluster_tree);
ec.setInputCloud(non_ground_cloud);
ec.extract(cluster_indices);
// 可视化
pcl::visualization::PCLVisualizer viewer("PCL Viewer");
viewer.setBackgroundColor(0, 0, 0);
viewer.addPointCloud<PointT>(non_ground_cloud, "non_ground_cloud");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "non_ground_cloud");
// 绘制点云聚类结果
int cluster_color[][3] = {{255, 0, 0}, {0, 255, 0}, {0, 0, 255}, {255, 255, 0}, {0, 255, 255}, {255, 0, 255}};
int color_idx = 0;
for (auto &indices : cluster_indices)
{
PointCloud::Ptr cluster_cloud(new PointCloud);
for (auto &index : indices.indices)
{
cluster_cloud->points.push_back(non_ground_cloud->points[index]);
}
pcl::visualization::PointCloudColorHandlerCustom<PointT> single_color(cluster_cloud, cluster_color[color_idx % 6][0], cluster_color[color_idx % 6][1], cluster_color[color_idx % 6][2]);
viewer.addPointCloud<PointT>(cluster_cloud, single_color, "cluster_" + std::to_string(color_idx));
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "cluster_" + std::to_string(color_idx));
color_idx++;
}
// 显示结果
while (!viewer.wasStopped())
{
viewer.spinOnce();
}
return 0;
}
```
在上面的代码中,我们首先读取了点云数据,并进行了下采样和滤波。接下来,我们使用平面分割算法将地面点提取出来,然后计算非地面点的法向量,并对其进行聚类,得到道路可行驶区域。最后,使用PCL可视化库将结果显示出来。
需要注意的是,上面的代码只是一个简单的示例,实际应用中还需要根据具体情况进行参数调整和算法优化。
阅读全文