用pcl库,基于激光雷达点云数据的道路可行驶区域检测,得到道路边界,车道线等,生成代码
时间: 2024-05-06 22:20:28 浏览: 168
以下是基于PCL库实现的道路可行驶区域检测代码:
```cpp
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/visualization/pcl_visualizer.h>
typedef pcl::PointXYZI PointT;
int main(int argc, char** argv)
{
// Load point cloud data from file
pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>);
pcl::PCDReader reader;
reader.read("input_cloud.pcd", *cloud);
// Voxel grid filtering to downsample the data
pcl::VoxelGrid<PointT> sor;
sor.setInputCloud(cloud);
sor.setLeafSize(0.2f, 0.2f, 0.2f);
pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT>);
sor.filter(*cloud_filtered);
// Pass through filtering to remove points outside a certain range
pcl::PassThrough<PointT> pass;
pass.setInputCloud(cloud_filtered);
pass.setFilterFieldName("z");
pass.setFilterLimits(0.0, 2.0);
pcl::PointCloud<PointT>::Ptr cloud_filtered_z(new pcl::PointCloud<PointT>);
pass.filter(*cloud_filtered_z);
// RANSAC plane segmentation to extract ground plane
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
pcl::SACSegmentation<PointT> seg;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setDistanceThreshold(0.2);
seg.setInputCloud(cloud_filtered_z);
seg.segment(*inliers, *coefficients);
// Extract ground plane points
pcl::ExtractIndices<PointT> extract;
pcl::PointCloud<PointT>::Ptr cloud_ground(new pcl::PointCloud<PointT>);
extract.setInputCloud(cloud_filtered_z);
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(*cloud_ground);
// Extract non-ground points
pcl::PointCloud<PointT>::Ptr cloud_obstacles(new pcl::PointCloud<PointT>);
extract.setNegative(true);
extract.filter(*cloud_obstacles);
// Euclidean clustering to group obstacles into separate clusters
std::vector<pcl::PointIndices> cluster_indices;
pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>);
tree->setInputCloud(cloud_obstacles);
pcl::EuclideanClusterExtraction<PointT> ec;
ec.setClusterTolerance(0.2);
ec.setMinClusterSize(100);
ec.setMaxClusterSize(10000);
ec.setSearchMethod(tree);
ec.setInputCloud(cloud_obstacles);
ec.extract(cluster_indices);
// Visualize the results
pcl::visualization::PCLVisualizer viewer("Road Detection");
viewer.setBackgroundColor(0.0, 0.0, 0.0);
viewer.addPointCloud<PointT>(cloud_ground, "ground");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "ground");
int i = 0;
for (auto indices : cluster_indices)
{
pcl::PointCloud<PointT>::Ptr cloud_cluster(new pcl::PointCloud<PointT>);
extract.setInputCloud(cloud_obstacles);
extract.setIndices(boost::make_shared<const pcl::PointIndices>(indices));
extract.setNegative(false);
extract.filter(*cloud_cluster);
std::string name = "obstacle_" + std::to_string(i);
viewer.addPointCloud<PointT>(cloud_cluster, name);
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, name);
i++;
}
viewer.addCoordinateSystem(3.0, "axis");
viewer.spin();
return 0;
}
```
该代码实现了以下步骤:
1. 从文件中加载点云数据
2. 使用体素网格滤波对数据进行下采样
3. 使用通道滤波器去除超出一定范围的点
4. 使用RANSAC平面分割算法提取地面平面
5. 将地面平面点提取出来,其余点被视为障碍物
6. 对障碍物点进行欧几里得聚类,将其分成多个簇
7. 将地面点和各个障碍物簇可视化展示
在该代码中,我们使用了点云库的多个模块,包括滤波、分割、提取等,这些模块提供了丰富的功能和算法,可以帮助我们更方便地处理点云数据。
阅读全文