请给我一个解决地名歧义的Python代码示例,要求使用机器学习的方法
时间: 2024-05-03 20:20:39 浏览: 217
可以使用Word2Vec模型来解决地名歧义问题。
以下是Python代码示例:
```
import gensim
model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary=True)
def resolve_location_ambiguity(sentence):
locations = []
tokens = sentence.split()
for token in tokens:
if token.lower() in model.vocab:
similarities = model.most_similar(positive=[token.lower(), 'location'], topn=1)
if similarities[0][1] > 0.5:
locations.append(similarities[0][0])
elif token in model.vocab:
similarities = model.most_similar(positive=[token, 'location'], topn=1)
if similarities[0][1] > 0.5:
locations.append(similarities[0][0])
return locations
sentences = [
'I went to Paris and Tokyo last year.',
'I met my friend in Rome and Barcelona.',
'I love the beaches in Miami and Hawaii.'
]
for sentence in sentences:
print('Original Sentence:', sentence)
print('Resolved Locations:', resolve_location_ambiguity(sentence))
```
这个函数会读取Word2Vec模型文件,在输入的句子中解决地名歧义。它在每个单词中寻找与“location”最相似的单词。如果相似度得分大于0.5,则将其添加到结果列表中。
句子列表中的每个句子都将被解析,并返回一个包含所有找到的地点的列表。
阅读全文