dlib.get_frontal_face_detector()该函数运用了什么算法

时间: 2023-07-15 19:14:12 浏览: 53
dlib.get_frontal_face_detector()函数使用了基于HOG(Histogram of Oriented Gradients,方向梯度直方图)特征和级联分类器(Cascade Classifier)的人脸检测算法。这个算法的基本思想是利用图像中人脸的局部特征(如边缘、线段、角点等)来构造人脸模型,然后通过在图像中滑动该模型并比较图像中的局部特征与模型特征之间的相似度来检测人脸。该算法的优点是检测速度快,且能够检测出各种姿态的人脸。
相关问题

dlib 的 get_frontal_face_detector 函数如何获取人脸的 128 位特征向量

### 回答1: dlib 的 get_frontal_face_detector 函数是用于检测人脸的,而不是获取人脸的 128 位特征向量。 要获取人脸的 128 位特征向量,你需要使用 dlib 的人脸识别模型。你可以使用 dlib 的模型训练好的模型,也可以使用 dlib 的模型训练自己的模型。 使用 dlib 的模型训练好的模型时,你可以使用 dlib 的 api 来提取人脸的 128 位特征向量。具体来说,你可以使用 dlib 的 get_face_chip_details 函数来获取人脸的剪裁信息,然后使用 dlib 的 extract_image_chip 函数来剪裁出人脸图像,最后使用 dlib 的 get_face_descriptor 函数来获取人脸的 128 位特征向量。 使用 dlib 的模型训练自己的模型时,你需要先使用 dlib 的人脸标注工具来标注人脸数据集,然后使用 dlib 的 api 来训练模型。训练好的模型可以用来提取人脸的 128 位特征向量。 ### 回答2: dlib 的 get_frontal_face_detector 函数是用来检测人脸的,它基于深度残差网络(ResNet)和级联分类器(cascaded classifier)的方法进行人脸检测。这个函数会返回一个检测器对象,我们可以用这个对象在图像中检测人脸。 要获取人脸的 128 位特征向量,首先需要使用 dlib 的 shape_predictor 对象对人脸进行关键点定位。这个对象是一个训练好的形状预测器,可以帮助我们定位人脸的关键点,例如眼睛、鼻子、嘴巴等。 一旦定位了人脸的关键点,我们可以使用 dlib 的 face_recognition_model_v1 对象来计算人脸的 128 位特征向量。这个对象是一个训练好的人脸识别模型,它将人脸图像映射到一个具有 128 个浮点数的向量空间。这个向量被认为是具有唯一性的,可以用于人脸识别任务。 通过调用 face_recognition_model_v1 对象的 compute_face_descriptor 函数,我们可以将人脸图像转换为一个包含 128 个浮点数的特征向量。这个函数接受图像和人脸关键点作为输入,并输出对应的特征向量。 综上所述,要获取人脸的 128 位特征向量,我们需要使用 dlib 提供的 shape_predictor 对象对人脸进行关键点定位,然后再使用 face_recognition_model_v1 对象计算特征向量。这样我们就可以获取到表示人脸特征的 128 位向量了。 ### 回答3: dlib的get_frontal_face_detector函数是用于检测人脸的,它使用了基于HOG特征和级联分类器的方法。具体而言,它首先会将输入的图像转换为灰度图像,然后通过应用HOG特征提取算法来检测图像中可能存在的人脸区域。接下来,它使用训练好的级联分类器来对候选人脸区域进行进一步的筛选和确认,以排除误检。 当检测到候选人脸区域后,通过dlib库中的shape_predictor模型,可以获取到人脸的面部特征点,例如眼睛、嘴巴、鼻子等位置。这些特征点的位置信息可以用于人脸对齐和刻画。 为了获取人脸的128位特征向量,我们需要用到dlib库中提供的face_recognition模型。通过使用dlib的dnn_face_recognition_resnet_model_v1模型,可以计算出人脸的128位特征向量。这个模型是一个基于深度卷积神经网络(CNN)的预训练模型,它通过大量数据的训练得到了对人脸进行表示和刻画的能力。该模型的输入是经过人脸对齐的图像,它会通过向前传递的方式,计算出表示该人脸的128位特征向量。 这个128位特征向量具有较好的区分度,可以用于人脸识别、人脸验证等任务。它可以对不同的人脸进行编码,使得相同人脸的特征向量在欧氏距离上接近,不同人脸的特征向量在欧氏距离上相对较远。通过比对不同人脸的特征向量之间的距离,就可以进行人脸匹配和识别。 因此,dlib的get_frontal_face_detector函数通过检测人脸区域并对其进行对齐,再利用face_recognition模型计算128位特征向量,从而实现了获取人脸的128位特征向量的功能。

基于以下代码import sys import dlib import cv2 predictor_path="shape_predictor_194_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) cam = cv2.VideoCapture(0) cam.set(3, 1280) cam.set(4, 720) color_white = (255, 255, 255) line_width = 3 while True: ret_val, img = cam.read() rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dets = detector(rgb_image) for det in dets: cv2.rectangle(img, (det.left(), det.top()), (det.right(), det.bottom()), color_white, line_width) shape = predictor(img, det) for p in shape.parts(): cv2.circle(img, (p.x, p.y), 2, (0, 255, 0), -1) cv2.imshow('my webcam', img) if cv2.waitKey(1) == 27: break cv2.destroyAllWindows() 加入dilb和OpenCV的目标跟踪算法,于持续视频播放中,每秒中的第一帧图像执行dilb人脸特征点检测,后续图像跟踪这些特征点,并使用dlib.correlation_tracker()函数、cv2.calcOpticalFlowFarneback()函数,争取实现194个人脸特征点的跟踪

抱歉,这段代码并没有加入目标跟踪算法。如果要加入目标跟踪算法,可以使用dlib.correlation_tracker()函数进行跟踪。这个函数可以帮助我们跟踪在第一帧中检测到的人脸特征点。 具体步骤如下: 在每秒中的第一帧图像中,使用dlib.get_frontal_face_detector()函数进行人脸检测,然后使用dlib.shape_predictor()函数检测人脸特征点。将这些特征点存储在一个列表中,并将列表传递给dlib.correlation_tracker()函数,以便跟踪这些特征点。 对于后续的每一帧图像,我们可以使用cv2.calcOpticalFlowFarneback()函数计算特征点的运动,然后使用dlib.correlation_tracker()函数进行跟踪。 具体实现可以参考以下代码: ``` import sys import dlib import cv2 predictor_path = "shape_predictor_194_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) cam = cv2.VideoCapture(0) cam.set(3, 1280) cam.set(4, 720) color_white = (255, 255, 255) line_width = 3 # 初始化跟踪器 tracker = None tracking_pts = [] while True: ret_val, img = cam.read() rgb_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) dets = detector(rgb_image) if len(dets) > 0: # 检测到人脸,获取特征点并初始化跟踪器 det = dets[0] shape = predictor(rgb_image, det) tracking_pts = [(p.x, p.y) for p in shape.parts()] tracker = dlib.correlation_tracker() rect = dlib.rectangle(det.left(), det.top(), det.right(), det.bottom()) tracker.start_track(rgb_image, rect) elif tracker is not None: # 没有检测到人脸,继续跟踪特征点 tracker.update(rgb_image) pos = tracker.get_position() rect = dlib.rectangle(int(pos.left()), int(pos.top()), int(pos.right()), int(pos.bottom())) shape = predictor(rgb_image, rect) tracking_pts = [(p.x, p.y) for p in shape.parts()] for pt in tracking_pts: cv2.circle(img, pt, 2, (0, 255, 0), -1) cv2.imshow('my webcam', img) if cv2.waitKey(1) == 27: break cv2.destroyAllWindows() ``` 这段代码使用dlib.correlation_tracker()函数对人脸特征点进行跟踪,如果没有检测到人脸,则继续跟踪前一帧中检测到的特征点。

相关推荐

最新推荐

recommend-type

【车牌识别】 GUI BP神经网络车牌识别(带语音播报)【含Matlab源码 668期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4

【作业视频】六年级第1讲--计算专项训练(2022-10-28 22-51-53).mp4
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信