我可以使用deap库创建一个NSGA-II算法对象,并指定它使用双层编码的方式吗,因为我要对工件这个个体进行编码,而工件会涉及工序和机器,一层编码是工件的某一道工序,另一层编码是某一道工序所选择的机器。请帮助我
时间: 2024-02-20 10:59:45 浏览: 45
NSGA-II源代码
是的,你可以使用deap库创建一个NSGA-II算法对象,并指定双层编码的方式来对工件进行编码。在deap中,你可以使用MultiLevelGenotype类来实现双层编码。这个类可以让你把一个个体分成多个子层,并且每个子层都有自己的编码方式。在你的情况下,你可以把每个工件分成两个子层,一层编码工序,另一层编码机器。以下是一个例子,展示了如何使用MultiLevelGenotype类来对工件进行双层编码:
```python
from deap import tools, creator, base
from deap.tools import MultiLevelGenotype
# Define the creator
creator.create("Fitness", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", MultiLevelGenotype, fitness=creator.Fitness)
# Define the toolbox
toolbox = base.Toolbox()
# Define the structure of the individual
toolbox.register("attr_machine", random_machine)
toolbox.register("attr_operation", random_operation)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_operation, toolbox.attr_machine), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# Define the evaluation function
def evaluate(individual):
# Calculate the fitness values for the individual
fitness1 = calculate_fitness1(individual)
fitness2 = calculate_fitness2(individual)
return fitness1, fitness2
toolbox.register("evaluate", evaluate)
# Define the operators
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selNSGA2)
# Create the population and run the algorithm
population = toolbox.population(n=100)
for gen in range(100):
# Select the parents
parents = toolbox.select(population, len(population))
# Clone the parents
offspring = [toolbox.clone(ind) for ind in parents]
# Apply the crossover and mutation operators
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < 0.5:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < 0.2:
toolbox.mutate(mutant)
del mutant.fitness.values
# Evaluate the offspring
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Replace the population with the offspring
population[:] = offspring
# Get the best individuals
best_individuals = tools.selBest(population, k=10)
```
在上面的例子中,我们首先定义了一个Fitness和Individual类,然后使用MultiLevelGenotype类来定义每个工件的双层编码方式。接下来,我们定义了一个toolbox,包含了创建个体和种群、评估函数、交叉和变异操作以及选择算子。最后,我们使用NSGA-II算法来演化种群,并且获取最优个体。你可以根据你的实际情况修改这个例子,以满足你的需求。
阅读全文