用python 写一个使用lstm预测车辆轨迹
时间: 2024-05-13 10:15:31 浏览: 170
论文-基于LSTM的动态环境车辆轨迹预测研究
5星 · 资源好评率100%
好的,下面是一个使用LSTM预测车辆轨迹的Python代码示例:
首先,需要导入必要的库和模块:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
```
接下来,加载数据集并进行处理:
```python
# 加载数据集
df = pd.read_csv('trajectory_data.csv', header=None)
# 将数据集转换为NumPy数组
dataset = df.values
# 将数据集转换为浮点型
dataset = dataset.astype('float32')
# 对数据集进行归一化
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
```
然后,将数据集划分为训练集和测试集:
```python
# 将数据集划分为训练集和测试集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
```
接下来,定义一个函数来创建数据集,该函数接受两个参数:数据集和时间步长:
```python
# 创建数据集
def create_dataset(dataset, time_step=1):
dataX, dataY = [], []
for i in range(len(dataset)-time_step-1):
a = dataset[i:(i+time_step), 0]
dataX.append(a)
dataY.append(dataset[i + time_step, 0])
return np.array(dataX), np.array(dataY)
```
然后,使用该函数来创建训练集和测试集的数据集:
```python
# 创建训练集和测试集的数据集
time_step = 100
X_train, y_train = create_dataset(train, time_step)
X_test, y_test = create_dataset(test, time_step)
```
接下来,将数据集的维度进行调整:
```python
# 将数据集的维度进行调整
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
```
然后,定义一个LSTM模型:
```python
# 定义LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(50, return_sequences=True))
model.add(LSTM(50))
model.add(Dense(1))
```
接下来,编译模型并训练:
```python
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=64, verbose=1)
```
最后,使用模型进行预测:
```python
# 使用模型进行预测
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
# 对预测结果进行反归一化
train_predict = scaler.inverse_transform(train_predict)
y_train = scaler.inverse_transform([y_train])
test_predict = scaler.inverse_transform(test_predict)
y_test = scaler.inverse_transform([y_test])
```
完整代码如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
# 加载数据集
df = pd.read_csv('trajectory_data.csv', header=None)
# 将数据集转换为NumPy数组
dataset = df.values
# 将数据集转换为浮点型
dataset = dataset.astype('float32')
# 对数据集进行归一化
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 将数据集划分为训练集和测试集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 创建数据集
def create_dataset(dataset, time_step=1):
dataX, dataY = [], []
for i in range(len(dataset)-time_step-1):
a = dataset[i:(i+time_step), 0]
dataX.append(a)
dataY.append(dataset[i + time_step, 0])
return np.array(dataX), np.array(dataY)
# 创建训练集和测试集的数据集
time_step = 100
X_train, y_train = create_dataset(train, time_step)
X_test, y_test = create_dataset(test, time_step)
# 将数据集的维度进行调整
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# 定义LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(50, return_sequences=True))
model.add(LSTM(50))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 训练模型
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=64, verbose=1)
# 使用模型进行预测
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
# 对预测结果进行反归一化
train_predict = scaler.inverse_transform(train_predict)
y_train = scaler.inverse_transform([y_train])
test_predict = scaler.inverse_transform(test_predict)
y_test = scaler.inverse_transform([y_test])
```
阅读全文