写一个gnn与cnn相结合的图像识别代码
时间: 2023-09-26 09:07:28 浏览: 105
以下是一个使用GNN和CNN结合的图像分类示例代码,使用PyTorch框架:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
class GNN_CNN(nn.Module):
def __init__(self, input_channels, hidden_channels, output_channels):
super(GNN_CNN, self).__init__()
# GNN layers
self.conv1 = GCNConv(input_channels, hidden_channels)
self.conv2 = GCNConv(hidden_channels, hidden_channels)
# CNN layers
self.conv3 = nn.Conv2d(input_channels, hidden_channels, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(hidden_channels, hidden_channels, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Classifier
self.fc = nn.Linear(hidden_channels, output_channels)
def forward(self, x, edge_index):
# GNN layers
x = F.relu(self.conv1(x, edge_index))
x = F.relu(self.conv2(x, edge_index))
# CNN layers
x = x.view(-1, x.shape[1], 1, 1) # reshape for CNN input
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = self.pool(x)
# Classifier
x = x.view(x.size(0), -1) # flatten for FC input
x = self.fc(x)
return x
```
在此代码中,我们使用了一个具有两个GCN层和两个卷积层(加池化)的模型,最后使用一个全连接层进行分类。该模型需要输入一个图像张量(大小为[batch_size, input_channels, height, width])和一个图形结构边缘索引(大小为[2, num_edges])。
阅读全文