基于tushare数据请用Python写一个Theta Neutral的期权交易策略
时间: 2024-06-12 11:06:20 浏览: 280
Theta Neutral期权交易策略是一种基于时间价值变化的交易策略,旨在通过卖出期权的时间价值来获得收益,同时通过购买期权来对冲风险。以下是基于tushare数据的Python代码示例。
步骤1:导入模块
```python
import tushare as ts
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
```
步骤2:获取股票数据
```python
stock_code = '600519' #贵州茅台
start_date = '20180101'
end_date = '20201231'
df = ts.get_k_data(stock_code, start=start_date, end=end_date)
df.index = pd.to_datetime(df.date)
df.drop(['date', 'code'], axis=1, inplace=True)
```
步骤3:计算波动率
```python
def calc_volatility(df):
close = df.close
log_ret = np.log(close / close.shift(1))
vol = log_ret.rolling(window=252).std() * np.sqrt(252)
return vol
volatility = calc_volatility(df)
```
步骤4:计算期权价格
```python
def calc_option_price(S, K, r, sigma, T, option_type):
d1 = (np.log(S/K) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
if option_type == 'call':
option_price = S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
else:
option_price = K * np.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)
return option_price
S = df.close.iloc[-1] #当前股价
K1 = S * 0.95 #买入看涨期权的行权价
K2 = S * 1.05 #卖出看涨期权的行权价
r = 0.02 #无风险利率
T1 = 30 / 365 #买入看涨期权的剩余期限
T2 = 60 / 365 #卖出看涨期权的剩余期限
sigma = volatility.iloc[-1] #当前波动率
call_buy_price = calc_option_price(S, K1, r, sigma, T1, 'call')
call_sell_price = calc_option_price(S, K2, r, sigma, T2, 'call')
theta = (call_sell_price - call_buy_price) / (T2 - T1)
```
步骤5:执行交易
```python
if theta > 0: #如果时间价值为正
#卖出看涨期权
#买入看涨期权
else:
#卖出看跌期权
#买入看跌期权
```
总之,Theta Neutral期权交易策略旨在通过卖出期权的时间价值来获得收益,同时通过购买期权来对冲风险。该策略可以在Python中通过tushare数据进行实现。
阅读全文