使用pytorch实现用shufflenet v2进行图像分类,并给出模型代码,训练代码,并描述整个过程
时间: 2023-08-07 14:03:13 浏览: 176
ShuffleNet V2是一种轻量级的深度神经网络,适用于移动设备和嵌入式设备上的图像分类任务。它采用了channel shuffle的思想,在保证模型精度的同时,大大减少了模型的计算量和参数量。
下面是使用PyTorch实现ShuffleNet V2进行图像分类的模型代码和训练代码:
```python
import torch
import torch.nn as nn
class ShuffleBlock(nn.Module):
def __init__(self, groups=2):
super(ShuffleBlock, self).__init__()
self.groups = groups
def forward(self, x):
batch_size, channels, height, width = x.size()
channels_per_group = channels // self.groups
x = x.view(batch_size, self.groups, channels_per_group, height, width)
x = x.transpose(1, 2).contiguous()
x = x.view(batch_size, -1, height, width)
return x
class ShuffleNetV2(nn.Module):
def __init__(self, num_classes=1000):
super(ShuffleNetV2, self).__init__()
self.conv1 = nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage2 = self._make_stage(24, 116, 3)
self.stage3 = self._make_stage(116, 232, 4)
self.stage4 = self._make_stage(232, 464, 6)
self.conv5 = nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0, bias=False)
self.bn5 = nn.BatchNorm2d(1024)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(1024, num_classes)
def _make_stage(self, in_channels, out_channels, repeat):
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
for i in range(repeat):
layers.append(ShuffleBlock())
layers.append(nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.ReLU(inplace=True)(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = self.bn5(x)
x = nn.ReLU(inplace=True)(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
上面的代码实现了ShuffleNet V2的主体结构。通过_make_stage函数可以定义每个stage的结构,其中包含多个ShuffleBlock以及卷积、BN和ReLU激活函数等操作。在forward函数中,将主体结构按照顺序连接起来,最后通过全局平均池化和全连接层输出分类结果。
下面是使用PyTorch进行模型训练的代码:
```python
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载训练集和测试集
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
# 定义模型
net = ShuffleNetV2(num_classes=10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001)
# 训练模型
for epoch in range(200):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
上面的代码中,使用了CIFAR10数据集进行模型训练和测试。在训练过程中,定义了交叉熵损失函数和随机梯度下降优化器,并使用了数据增强技术。在每个epoch结束后,通过测试集计算模型的准确率。
阅读全文