for(i=2;i<MSD+2;i++) if (!strcmp(tempDir->directItem[i].fileName, fName) && tempDir->directItem[i].type == 1) break;

时间: 2024-04-23 21:21:52 浏览: 21
这是一段 C 语言代码,其中使用了一个 for 循环和一个 if 判断语句。循环的条件是 i<MSD+2,意思是 i 从 2 开始一直循环到 MSD+1。在循环体内部,使用了 strcmp 函数比较字符串是否相等,并且判断了一个文件类型是否为 1。如果条件成立,就会跳出循环,否则继续循环。请问你需要我解释这段代码的具体作用吗?
相关问题

for(i=2;i<MSD+2;i++) { cur_mkdir->directItem[i].sign=0; cur_mkdir->directItem[i].firstDisk=-1; strcpy(cur_mkdir->directItem[i].name,""); cur_mkdir->directItem[i].next=-1; cur_mkdir->directItem[i].type=0; cur_mkdir->directItem[i].size=0; }

这段代码是在对目录项进行循环赋值操作。具体来说,该目录项有 MSD 个空间,其中前两个空间已经被分别用于存储 `.` 和 `..` 两个目录项,而剩余的空间需要进行初始化。下面是代码的解释: - `for(i=2;i<MSD+2;i++)`:循环遍历该目录项中除了前两个空间以外的所有空间,即从下标 2 到下标 MSD+1。 - `cur_mkdir->directItem[i].sign=0;`:将该目录项中第 `i` 个空间的标志位 `sign` 设为 0,表示该空间当前没有被使用。 - `cur_mkdir->directItem[i].firstDisk=-1;`:将该目录项中第 `i` 个空间的 `firstDisk` 字段设为 -1,表示该空间对应的文件(或子目录)在磁盘上不存在。 - `strcpy(cur_mkdir->directItem[i].name,"");`:将该目录项中第 `i` 个空间的 `name` 字段设为空字符串,表示该空间对应的文件(或子目录)没有名称。 - `cur_mkdir->directItem[i].next=-1;`:将该目录项中第 `i` 个空间的 `next` 字段设为 -1,表示该空间对应的文件(或子目录)没有下一个磁盘块。 - `cur_mkdir->directItem[i].type=0;`:将该目录项中第 `i` 个空间的 `type` 字段设为 0,表示该空间对应的文件(或子目录)不存在。 - `cur_mkdir->directItem[i].size=0;`:将该目录项中第 `i` 个空间的 `size` 字段设为 0,表示该空间对应的文件(或子目录)大小为 0。 需要注意的是,循环的起始下标是 2 而不是 0,因为前两个空间已经被使用。另外,循环的终止下标是 MSD+2 而不是 MSD+1,因为需要将第 MSD+1 个空间也进行初始化。

//子目录初始化 for(int i = 2; i < MSD + 2; i++) { cur_mkdir->directItem[i].sign = 0; cur_mkdir->directItem[i].firstDisk = -1; strcpy(cur_mkdir->directItem[i].fileName, ""); cur_mkdir->directItem[i].next = -1; cur_mkdir->directItem[i].type = 0; cur_mkdir->directItem[i].size = 0; }

这段代码是在为一个新建立的子目录进行初始化工作。具体来说,它做了以下几件事情: 1. 遍历该子目录的所有目录项,从第 2 个目录项(即 "." 和 ".." 目录项之后)开始,到第 MSD+2 个目录项结束(MSD 代表最大子目录数),对每个目录项进行初始化。 2. 将每个目录项的 sign 值置为 0,表示该目录项未被占用。 3. 将每个目录项的 firstDisk 值设置为 -1,表示该目录项对应的文件或目录未分配磁盘块。 4. 将每个目录项的 fileName 值设置为空字符串,表示该目录项未命名。 5. 将每个目录项的 next 值设置为 -1,表示该目录项不属于任何文件或目录的链表。 6. 将每个目录项的 type 值设置为 0,表示该目录项既不是文件也不是目录。 7. 将每个目录项的 size 值设置为 0,表示该目录项对应的文件或目录大小为 0 字节。 这样就完成了该子目录的初始化工作,其中每个目录项都是空闲的、未被占用的状态。

相关推荐

void write(string* str,char *content,int size) { char fName[20];strcpy_s(fName, str[1].c_str()); //在当前目录下查找目标文件 int i, j; for (i = 2; i < MSD + 2; i++) if (!strcmp(curDir->directItem[i].fileName, fName) && curDir->directItem[i].type == 0) break; if (i >= MSD + 2) { cout << "找不到该文件!" << endl; return; } int cur = i;//当前目录项的下标 int fSize = curDir->directItem[cur].size;//目标文件大小 int item = curDir->directItem[cur].firstDisk;//目标文件的起始磁盘块号 while (fat[item].item != -1)item = fat[item].item;//计算保存该文件的最后一块盘块号 char* first = fdisk + item * DISK_SIZE + fSize % DISK_SIZE;//计算该文件的末地址 //如果盘块剩余部分够写,则直接写入剩余部分 if (DISK_SIZE - fSize % DISK_SIZE > size) { strcpy_s(first, content); curDir->directItem[cur].size += size; } //如果盘块剩余部分不够写,则找到空闲磁盘块写入 else { //先将起始磁盘剩余部分写完 for (j = 0; j < DISK_SIZE - fSize % DISK_SIZE; j++) { first[j] = content[j]; } int res_size = size - (DISK_SIZE - fSize % DISK_SIZE);//剩余要写的内容大小 int needDisk = res_size / DISK_SIZE;//占据的磁盘块数量 int needRes = res_size % DISK_SIZE;//占据最后一块磁盘块的大小 if (needDisk > 0)needRes += 1; for (j = 0; j < needDisk; j++) { for (i = USER_ROOT_STARTBLOCK + 1; i < DISK_NUM; i++) if (fat[i].state == 0) break; if (i >= DISK_NUM) { cout << "磁盘已被分配完!" << endl; return; } first = fdisk + i * DISK_SIZE;//空闲磁盘起始盘物理地址 //当写到最后一块磁盘,则只写剩余部分内容 if (j == needDisk - 1) { for (int k = 0; k < size - (DISK_SIZE - fSize % DISK_SIZE - j * DISK_SIZE); k++) first[k] = content[k]; } else { for (int k = 0; k < DISK_SIZE; k++) first[k] = content[k]; } //修改文件分配表内容 fat[item].item = i; fat[i].state = 1; fat[i].item = -1; } curDir->directItem[cur].size += size; } }

解释以下代码每一句的作用和最终结果% 定义模拟参数 dt = 0.01; % 时间步长 T = 100; % 模拟总时间 N = T/dt; % 时间步数 Vx = zeros(1,N); % 初始化 x 方向速度 Vy = zeros(1,N); % 初始化 y 方向速度 Px = 1; % x 方向阻尼系数 Py = 1; % y 方向阻尼系数 Sx = 0.1; % x 方向随机扰动系数 Sy = 0.1; % y 方向随机扰动系数 W1 = randn(1,N); % 服从正态分布的随机数 W2 = randn(1,N); % 模拟细胞迁移过程 for n = 1:N-1 Vx(n+1) = Vx(n) - dt/Px*Vx(n) + dt*Sx/sqrt(Px)*W1(n); Vy(n+1) = Vy(n) - dt/Py*Vy(n) + dt*Sy/sqrt(Py)*W2(n); end % 绘制细胞运动轨迹 figure; plot(cumsum(Vx)*dt, cumsum(Vy)*dt, 'LineWidth', 2); xlabel('x 方向位移'); ylabel('y 方向位移'); title('细胞迁移轨迹'); % 假设细胞轨迹数据保存在一个数组r中,每行为一个时间点的坐标(x,y,z) % 假设取样时间间隔Delta_t为1,n为时间间隔的倍数,即n * Delta_t为时间间隔 % 计算每个时间步长的位移的平方和 dx = cumsum(Vx*dt + Sx/sqrt(Px)*sqrt(dt)*W1).^2; dy = cumsum(Vy*dt + Sy/sqrt(Py)*sqrt(dt)*W2).^2; % 计算平均的位移平方和 msd_avg = mean(dx + dy); % 计算起始点的坐标的平方 init_pos_sq = Px+Py; % 计算MSD均方位移% msd_percent = msd_avg/init_pos_sq * 100; % 将dx和dy合并成一个矩阵 pos = [dx; dy]; d = pos(:, 2:end) - pos(:, 1:end-1); % 根据位移向量的定义,d(i,j) 表示 j+1 时刻 i 方向上的位移 msd = sum(d.^2, 1); time_interval = 1; % 假设每个时间间隔为1 t = (0:length(msd)-1) * time_interval; msd_avg = zeros(size(msd)); for i = 1:length(msd) msd_avg(i) = mean(msd(i:end)); end % 绘制 MSD 曲线 plot(t, msd_avg); xlabel('Time interval'); ylabel('Mean squared displacement'); % 绘制MSD曲线和拟合直线 t = 1:length(msd_avg); % 时间间隔数组,单位为1 coefficients = polyfit(t, msd_avg, 1); % 对MSD曲线进行线性拟合 slope = coefficients(1); % 提取拟合直线的斜率 plot(t, msd_avg, 'b'); hold on; plot(t, coefficients(1) * t + coefficients(2), 'r'); xlabel('Time interval (\Delta t)'); ylabel('Mean-Square Displacement (MSD)'); legend('MSD', 'Linear fit');

最新推荐

recommend-type

Next-Generation Pan-European eCall 下一代泛欧 NG-eCall技术

自今年3月31日起,欧洲市场的新车必须配备eCall系统,目前法规执行的是eCall 2.0标准,是基于GSM/UMTS的in-band modem技术,简单的说是基于语音通道传输最小数据集(MSD),而下一代基于PS域的eCall技术,主要是基于...
recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通