train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
时间: 2024-05-26 15:17:43 浏览: 43
这段代码是用来创建一个PyTorch的DataLoader对象,用于加载训练数据。其中,train_a和train_u是两个张量,分别代表训练数据中的输入和标签。batch_size是指每个batch的大小,shuffle参数表示是否打乱数据顺序。
具体来说,这段代码将train_a和train_u打包成一个TensorDataset对象,然后再传入DataLoader中。在每个epoch中,DataLoader会自动将数据打乱并分成多个batch,每个batch的大小为batch_size,最后返回一个迭代器,可以用于遍历整个训练集。
相关问题
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_train, y_train), batch_size=batch_size, shuffle=True)
这段代码的作用是将训练集数据(`x_train` 和 `y_train`)打包成 PyTorch 中的 TensorDataset 类型数据集,再使用 DataLoader 类对数据进行批量读取,以便于输入到神经网络模型中进行训练。其中,`batch_size` 表示每个批次的样本数,`shuffle=True` 表示在每个 epoch 开始时将数据集随机打乱,以增加样本的随机性和模型的鲁棒性。这里使用的是 TensorDataset,它是 PyTorch 中的一种数据集类型,可以将输入数据和对应的标签打包成一个元组,方便后续使用 DataLoader 进行批量读取。
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
阅读全文