深度学习加速器国内外研究现状
时间: 2023-06-23 17:04:50 浏览: 256
基于FPGA的深度学习加速器的设计与实现》.zip
深度学习加速器是指用于加速深度学习算法的硬件设备,其主要目的是提高深度学习模型的训练速度和推理速度,使得深度学习算法可以更快地应用于实际生产中。目前,深度学习加速器的研究已经成为人工智能领域的一个热门话题。以下是深度学习加速器在国内外的研究现状。
国外研究现状:
1. Google TPU
Google TPU是谷歌推出的一种专门用于深度学习加速的芯片,它采用了定制化的架构和硬件优化技术,可以显著提高深度学习模型的训练速度和推理速度。
2. Nvidia GPU
Nvidia GPU是目前最为流行的深度学习加速器之一,它使用了CUDA架构和硬件优化技术,可以为深度学习模型提供强大的计算能力和高效的数据传输速度。
3. Intel Nervana
Intel Nervana是英特尔推出的一种深度学习加速器,它使用了专门的硬件架构和优化技术,可以为深度学习模型提供高效的计算和内存访问能力。
国内研究现状:
1. Cambricon
Cambricon是中国科技公司寒武纪推出的一种深度学习加速器,它采用了深度学习专用的硬件架构和优化技术,可以显著提高深度学习模型的训练速度和推理速度。
2. Horizon Robotics
Horizon Robotics是中国的一家人工智能公司,其推出的“桂芯”深度学习加速器可以为深度学习模型提供高效的计算能力和数据传输速度。
3. Huawei Ascend
华为推出的Ascend深度学习加速器采用了专门的硬件架构和优化技术,可以为深度学习模型提供高效的计算和内存访问能力。
总的来说,深度学习加速器在国内外的研究和应用都已经取得了很大的进展,未来深度学习加速器的发展将会更加快速和广泛,这将为人工智能技术的发展带来更多的机会和挑战。
阅读全文