VGG19卷积神经网络模型图
时间: 2023-09-27 18:08:29 浏览: 88
以下是VGG19卷积神经网络模型图:
```
Input (224 x 224 x 3)
├── [Conv2D (64 filters, 3x3 kernel, same padding)]
├── [Conv2D (64 filters, 3x3 kernel, same padding)]
├── [MaxPool2D (2x2 pool size, 2x2 strides)]
├── [Conv2D (128 filters, 3x3 kernel, same padding)]
├── [Conv2D (128 filters, 3x3 kernel, same padding)]
├── [MaxPool2D (2x2 pool size, 2x2 strides)]
├── [Conv2D (256 filters, 3x3 kernel, same padding)]
├── [Conv2D (256 filters, 3x3 kernel, same padding)]
├── [Conv2D (256 filters, 3x3 kernel, same padding)]
├── [Conv2D (256 filters, 3x3 kernel, same padding)]
├── [MaxPool2D (2x2 pool size, 2x2 strides)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [MaxPool2D (2x2 pool size, 2x2 strides)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [Conv2D (512 filters, 3x3 kernel, same padding)]
├── [MaxPool2D (2x2 pool size, 2x2 strides)]
├── [Flatten]
├── [Dense (4096 units)]
├── [Dropout (0.5)]
├── [Dense (4096 units)]
├── [Dropout (0.5)]
├── [Dense (1000 units)]
├── [Softmax]
Output (1000 classes)
```
注意,这里的“64 filters”等都是指卷积核数量,而“3x3 kernel”指卷积核大小。此外,所有卷积层都使用“same”填充以保持输出与输入大小相同。
阅读全文