<--- Last few GCs ---> [28384:007C13A8] 37302 ms: Scavenge (reduce) 968.1 (1022.0) -> 968.0 (1023.0) MB, 0.7 / 0.0 ms (average mu = 0.300, current mu = 0.262) allocation failure [28384:007C13A8] 37305 ms: Scavenge (reduce) 968.5 (1025.3) -> 968.5 (1025.3) MB, 1.1 / 0.0 ms (average mu = 0.300, current mu = 0.262) allocation failure [28384:007C13A8] 37745 ms: Mark-sweep (reduce) 983.8 (1037.5) -> 983.6 (1029.7) MB, 412.6 / 0.0 ms (average mu = 0.204, current mu = 0.109) allocation failure scavenge might not succeed <--- JS stacktrace ---> FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of memory 1: 0115BEF9 v8::internal::Heap::PageFlagsAreConsistent+2185 2: 01151F0E v8::internal::Heap::CollectGarbage+1998 3: 011505A3 v8::internal::Heap::AllocateExternalBackingStore+1187 npm ERR! code ELIFECYCLE npm ERR! errno 134 npm ERR! orange@1.0.0 serve: `vue-cli-service serve` npm ERR! Exit status 134 npm ERR! npm ERR! Failed at the orange@1.0.0 serve script. npm ERR! This is probably not a problem with npm. There is likely additional logging output above.
时间: 2024-03-30 10:39:22 浏览: 149
这是一个 JavaScript heap out of memory 错误,常见于 Node.js 应用程序中。它表示 Node.js 的内存使用超过了可用的堆内存限制,导致应用程序崩溃。通常需要增加 Node.js 堆内存限制或优化代码以减少内存使用。在这个例子中,是一个 Vue.js 应用程序使用了过多的内存,可能需要检查代码并进行优化。
相关问题
<--- Last few GCs ---> [11584:0000020B71203B50] 69329 ms: Scavenge (reduce) 2037.9 (2050.3) -> 2037.3 (2051.3) MB, 6.3 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure [11584:0000020B71203B50] 69339 ms: Scavenge (reduce) 2038.2 (2053.3) -> 2037.6 (2053.3) MB, 3.2 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure [11584:0000020B71203B50] 69348 ms: Scavenge (reduce) 2038.3 (2050.5) -> 2038.1 (2052.0) MB, 3.3 / 0.0 ms (average mu = 0.348, current mu = 0.419) allocation failure 12: 00007FF6482BAB44 v8::internal::FactoryBase<v8::internal::Factory>::NewFixedArrayWithFiller+84 13: 00007FF6482BAE43 v8::internal::FactoryBase<v8::internal::Factory>::NewFixedArrayWithMap+35 14: 00007FF6480C8A10 v8::internal::HashTable<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::EnsureCapacity<v8::internal::Isolate>+208 15: 00007FF6480C6086 v8::internal::Dictionary<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::Add<v8::internal::Isolate>+102 16: 00007FF6480CF346 v8::internal::BaseNameDictionary<v8::internal::NameDictionary,v8::internal::NameDictionaryShape>::Add+118 17: 00007FF647FC430C v8::internal::Runtime::GetObjectProperty+2204 18: 00007FF64848B50D v8::internal::SetupIsolateDelegate::SetupHeap+463949 19: 00007FF6485017A9 v8::internal::SetupIsolateDelegate::SetupHeap+947945 20: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 21: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 22: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 23: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 24: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 25: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 26: 00007FF648423EF2 v8::internal::SetupIsolateDelegate::SetupHeap+40498 27: 0000028E519B08BF
这段错误堆栈信息显示了一系列垃圾回收(GC)的过程,并且在其中的某个回收过程中发生了分配失败(allocation failure)。这可能是由于内存不足导致的。
垃圾回收是为了回收不再使用的内存空间,并释放给其他对象使用。在这个过程中,通过标记和清除等算法来判断哪些对象是可回收的。
然而,如果在垃圾回收过程中发现内存不足以分配新的对象,就会导致分配失败。这可能是因为系统内存已经达到极限,或者存在内存泄漏等问题。
要解决这个问题,可以尝试以下步骤:
1. 检查代码中是否存在内存泄漏问题:确保没有意外的循环引用或长期保留不必要的对象。
2. 优化代码和算法:检查代码中是否存在低效的内存使用方式,尝试优化算法以减少内存占用。
3. 增加内存限制:如果可能,可以尝试增加系统的内存限制,以提供更多的可用内存。
4. 分析内存使用情况:使用内存分析工具来检查应用程序的内存使用情况,找出是否存在大量占用内存的对象或数据结构。
5. 升级系统或环境:如果你的系统或环境版本较旧,可能存在一些已知的内存管理问题。尝试升级到最新版本以解决这些问题。
如果问题仍然存在,请提供更多的上下文信息、代码示例或其他相关的错误信息,以便更好地理解问题并提供更具体的解决方案。
<--- Last few GCs --->
As an AI language model, I do not have access to a specific system's GC logs. However, in general, garbage collection (GC) is a process used by many programming languages to automatically free up memory that is no longer used or needed by an application. The frequency and duration of GC events can vary depending on the language and implementation being used, as well as the amount of memory being allocated and released by the program. In some cases, developers may need to adjust certain settings or algorithms related to GC to optimize performance and memory usage.
阅读全文