用MATLAB写一个LSTM模型的十二步预测代码
时间: 2024-04-30 07:20:32 浏览: 91
以下是一个简单的LSTM模型的十二步预测MATLAB代码:
```matlab
% 步骤1:加载数据
data = load('data.mat');
X = data.X;
Y = data.Y;
% 步骤2:拆分数据集
train_ratio = 0.7;
val_ratio = 0.15;
test_ratio = 0.15;
[trainInd, valInd, testInd] = dividerand(size(X,2), train_ratio, val_ratio, test_ratio);
X_train = X(:,trainInd);
Y_train = Y(:,trainInd);
X_val = X(:,valInd);
Y_val = Y(:,valInd);
X_test = X(:,testInd);
Y_test = Y(:,testInd);
% 步骤3:定义LSTM模型
numFeatures = size(X_train,1);
numResponses = size(Y_train,1);
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numResponses)
regressionLayer];
% 步骤4:定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs',500, ...
'MiniBatchSize',100, ...
'ValidationData',{X_val,Y_val}, ...
'Plots','training-progress', ...
'Verbose',false);
% 步骤5:训练LSTM模型
net = trainNetwork(X_train,Y_train,layers,options);
% 步骤6:使用LSTM模型进行预测
Y_pred = predict(net,X_test);
% 步骤7:计算预测误差
RMSE = sqrt(mean((Y_test - Y_pred).^2));
% 步骤8:将预测结果可视化
figure;
plot(Y_test);
hold on;
plot(Y_pred);
legend('真实值','预测值');
% 步骤9:定义十二步预测的输入
X_pred = X_test(:,end-11:end);
% 步骤10:逐步进行十二步预测
for i=1:12
Y_next = predict(net,X_pred);
Y_pred = [Y_pred Y_next];
X_pred = [X_pred(:,2:end) Y_next];
end
% 步骤11:将十二步预测可视化
figure;
plot(Y_test);
hold on;
plot(Y_pred);
legend('真实值','预测值');
% 步骤12:计算十二步预测的误差
RMSE_pred = sqrt(mean((Y_test(:,end-11:end) - Y_pred(:,end-11:end)).^2));
```
需要注意的是,这只是一个简单的LSTM模型的预测示例,实际应用中需要根据具体情况进行调整和优化。
阅读全文