precision和accuracy区别 cross_val_score
时间: 2023-04-03 08:02:54 浏览: 251
Precision 和 Accuracy 都是评估模型性能的指标,但是它们的计算方式和意义不同。Precision 是指模型预测为正例的样本中,真正为正例的样本所占的比例;而 Accuracy 是指模型预测正确的样本数占总样本数的比例。在交叉验证中,cross_val_score 可以用来计算模型的 Precision 和 Accuracy。
相关问题
forest = RandomForestClassifier(max_depth=6, min_samples_leaf=10, n_estimators=1000) def muti_score(model): # warnings.filterwarnings('ignore') accuracy = cross_val_score(model, X_train, Y_train, scoring='accuracy', cv=5) precision = cross_val_score(model, X_train, Y_train, scoring='precision', cv=5) recall = cross_val_score(model, X_train, Y_train, scoring='recall', cv=5) f1_score = cross_val_score(model, X_train, Y_train, scoring='f1', cv=5) auc = cross_val_score(model, X_train, Y_train, scoring='roc_auc', cv=5) print("准确率:",accuracy.mean()) print("精确率:",precision.mean()) print("召回率:",recall.mean()) print("F1_score:",f1_score.mean()) print("AUC:",auc.mean()) muti_score(forest)
这是一段Python代码,定义了一个名为forest的随机森林分类器模型,其中max_depth表示树的最大深度为6,min_samples_leaf表示最小叶子节点样本数为10,n_estimators表示模型中树的数量为1000。
另外,代码还定义了一个名为muti_score的函数,该函数的参数为一个模型,用于计算模型的多个评价指标。
from sklearn.model_selection import GridSearchCV, cross_val_score, cross_validate
`GridSearchCV` 是用于进行交叉验证搜索的函数,`cross_val_score` 和 `cross_validate` 是用于进行交叉验证评估的函数,它们都是来自于 `sklearn.model_selection` 模块的函数。
`GridSearchCV` 可以对模型的超参数进行网格搜索,并且结合交叉验证来评估模型性能,它的使用方法如下:
```python
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
# 定义模型和超参数搜索空间
param_grid = {'C': [0.1, 1, 10], 'gamma': [0.1, 1, 10]}
svc = SVC(kernel='rbf')
# 进行网格搜索和交叉验证
grid_search = GridSearchCV(svc, param_grid=param_grid, cv=5)
grid_search.fit(X, y)
# 输出最优参数和最优目标值
print(grid_search.best_params_)
print(grid_search.best_score_)
```
`cross_val_score` 可以对模型进行交叉验证评估,它的使用方法如下:
```python
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
from sklearn.datasets import load_iris
# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
# 定义模型
svc = SVC(kernel='rbf', C=1, gamma=0.1)
# 进行交叉验证评估
scores = cross_val_score(svc, X, y, cv=5, scoring='accuracy')
# 输出评估结果
print(scores)
print(scores.mean())
```
`cross_validate` 可以在交叉验证过程中计算多个评估指标,它的使用方法如下:
```python
from sklearn.model_selection import cross_validate
from sklearn.svm import SVC
from sklearn.datasets import load_iris
# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
# 定义模型
svc = SVC(kernel='rbf', C=1, gamma=0.1)
# 定义评估指标
scoring = ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro']
# 进行交叉验证评估
scores = cross_validate(svc, X, y, cv=5, scoring=scoring)
# 输出评估结果
print(scores)
```
这些函数的具体参数和使用方法可以参考 Scikit-learn 官方文档。
阅读全文