def forward(self, x): x = self.downsample_conv(x) x0 = self.split_conv0(x) x1 = self.split_conv1(x) x1 = self.blocks_conv(x1) x = torch.cat([x1, x0], dim=1) x = self.concat_conv(x) return x这段代码的含义

时间: 2023-11-17 11:07:08 浏览: 31
这段代码定义了一个前向传播的函数,其中输入的参数 `x` 是一个张量,代表着网络模型的输入。在函数中,首先通过一个下采样卷积层 `downsample_conv` 对输入 `x` 进行下采样,将其尺寸减小。然后,将下采样后的特征张量 `x` 分别输入到两个卷积层 `split_conv0` 和 `split_conv1` 中,得到两个特征张量 `x0` 和 `x1`。接下来,对 `x1` 进行多次残差块计算,通过 `blocks_conv` 中的 Residual Block 层来提取和增强特征。然后,将 `x0` 和 `x1` 进行拼接,得到一个新的特征张量 `x`。最后,将 `x` 输入到合并卷积层 `concat_conv` 中,对特征进行融合和加工,最终得到网络模型的输出结果。整个函数的作用就是将输入张量通过网络模型的各个层进行前向传播计算,并返回最终的输出结果。
相关问题

class Partial_conv3(nn.Module): def __init__(self, dim, n_div, forward): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x = torch.cat((x1, x2), 1) return x 在这段代码中插入全局平均池化做通道增强的模块

可以将全局平均池化放在每个 forward 函数的最后,对每个 channel 进行平均池化操作,然后将结果与未被改变的 channel 拼接起来,得到增强后的输出。修改后的代码如下: ``` class Partial_conv3(nn.Module): def __init__(self, dim, n_div, forward): super().__init__() self.dim_conv3 = dim // n_div self.dim_untouched = dim - self.dim_conv3 self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False) self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1)) # 添加全局平均池化层 if forward == 'slicing': self.forward = self.forward_slicing elif forward == 'split_cat': self.forward = self.forward_split_cat else: raise NotImplementedError def forward_slicing(self, x: Tensor) -> Tensor: # only for inference x = x.clone() # !!! Keep the original input intact for the residual connection later x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :]) x[:, :self.dim_conv3, :, :] = self.global_avg_pool(x[:, :self.dim_conv3, :, :]) # 添加全局平均池化 x = torch.cat((x, x[:, self.dim_conv3:, :, :]), 1) return x def forward_split_cat(self, x: Tensor) -> Tensor: x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1) x1 = self.partial_conv3(x1) x1 = self.global_avg_pool(x1) # 添加全局平均池化 x = torch.cat((x1, x2), 1) return x ```

为以下每句代码做注释:class Bottleneck(nn.Module): expansion = 4 def init(self, in_channel, out_channel, stride=1, downsample=None): super(Bottleneck, self).init() self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False) # squeeze channels self.bn1 = nn.BatchNorm2d(out_channel) self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1) self.bn2 = nn.BatchNorm2d(out_channel) self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1, stride=1, bias=False) # unsqueeze channels self.bn3 = nn.BatchNorm2d(out_channel * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += identity out = self.relu(out) return out

这段代码定义了一个名为 Bottleneck 的类,继承自 nn.Module。Bottleneck 是 ResNet 中的一种基础块,由三个卷积层组成。 - expansion = 4:用于扩展通道数,即输出通道数是输入通道数的 expansion 倍。 - def __init__(self, in_channel, out_channel, stride=1, downsample=None):构造函数,传入参数为输入通道数、输出通道数、步幅和下采样。 - super(Bottleneck, self).__init__():调用父类的构造函数。 - self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=1, stride=1, bias=False):第一个卷积层,使用 1x1 的卷积核进行降维,减少通道数。 - self.bn1 = nn.BatchNorm2d(out_channel):第一个 BatchNormalization 层。 - self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=stride, bias=False, padding=1):第二个卷积层,使用 3x3 的卷积核进行特征提取。 - self.bn2 = nn.BatchNorm2d(out_channel):第二个 BatchNormalization 层。 - self.conv3 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel * self.expansion, kernel_size=1, stride=1, bias=False):第三个卷积层,使用 1x1 的卷积核进行升维,扩展通道数。 - self.bn3 = nn.BatchNorm2d(out_channel * self.expansion):第三个 BatchNormalization 层。 - self.relu = nn.ReLU(inplace=True):ReLU 激活函数。 - self.downsample = downsample:下采样函数,用于调整输入和输出的维度。 - def forward(self, x):前向传播函数,传入参数为输入数据 x。 - identity = x:将输入数据保存下来。 - if self.downsample is not None: identity = self.downsample(x):如果下采样函数不为空,则使用下采样函数调整输入数据。 - out = self.conv1(x):第一个卷积层的前向传播。 - out = self.bn1(out):第一个 BatchNormalization 层的前向传播。 - out = self.relu(out):ReLU 激活函数的前向传播。 - out = self.conv2(out):第二个卷积层的前向传播。 - out = self.bn2(out):第二个 BatchNormalization 层的前向传播。 - out = self.relu(out):ReLU 激活函数的前向传播。 - out = self.conv3(out):第三个卷积层的前向传播。 - out = self.bn3(out):第三个 BatchNormalization 层的前向传播。 - out += identity:将输入数据和经过卷积后的数据相加,实现残差连接。 - out = self.relu(out):ReLU 激活函数的前向传播。 - return out:返回经过 Bottleneck 块处理后的数据。

相关推荐

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

最新推荐

recommend-type

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用
recommend-type

2107381120 王孟丽 实验2 (1).docx

2107381120 王孟丽 实验2 (1).docx
recommend-type

JavaScript_其他Meta JS项目使用的工具库集合.zip

JavaScript
recommend-type

asm-4.2.jar

asm.jar的作用: 提到asm.jar的作用,那么最显著的莫过于计算机显示Android手机屏幕了;其次可以调整计算机上显示Android手机屏幕的大小。ASM 是一个Java字节码操纵框架。它可以直接以二进制形式动态地生成 stub 类或其他代理类,或者在装载时动态地修改类。ASM 提供类似于 BCEL 和 SERP 之类的工具包
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依