class ResBlock(nn.Module): def __init__(self, c_in, c_out, conv_block=Convx2, batch_norm=True): super().__init__() if c_in != c_out: self.skip = nn.Conv2d(c_in, c_out, 1) else: self.skip = Identity() self.convblock = conv_block(c_in, c_out, batch_norm) def forward(self, x): skipped = self.skip(x) residual = self.convblock(x) return skipped + residual是什么意思

时间: 2024-04-19 14:25:06 浏览: 25
这段代码定义了一个名为 `ResBlock` 的自定义模块,它实现了一个残差块(Residual Block)的功能。 具体的实现如下: 1. `ResBlock` 类继承自 `nn.Module`,表示这是一个 PyTorch 模块。 2. 在 `__init__` 方法中,接收输入通道数 `c_in`、输出通道数 `c_out`、卷积块类型 `conv_block`(默认为 `Convx2`)和是否使用批归一化 `batch_norm`(默认为 True)作为参数。 3. 如果输入通道数 `c_in` 不等于输出通道数 `c_out`,则创建一个 1x1 的卷积层 `self.skip` 来将输入通道数调整为输出通道数。这是为了解决在残差连接中维度不匹配的问题。如果输入通道数等于输出通道数,则创建一个恒等映射层 `self.skip`。 4. 创建一个卷积块 `self.convblock`,使用 `conv_block` 类型来实现,接收输入通道数、输出通道数和是否使用批归一化作为参数。 5. 在 `forward` 方法中,执行模块的前向传播逻辑。首先将输入张量 `x` 分别经过残差连接的两部分:通过恒等映射层 `self.skip` 和卷积块 `self.convblock`。然后将这两部分的结果相加,得到最终的输出张量。 总结来说,这个自定义模块实现了一个残差块,它通过残差连接的方式将输入张量直接添加到卷积块的输出上,并通过相加操作实现特征的融合。这种设计可以帮助网络更好地学习残差信息,从而提升模型性能。
相关问题

class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True), nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), nn.BatchNorm2d(ch_out), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class SqueezeAttentionBlock(nn.Module): def __init__(self, ch_in, ch_out): super(SqueezeAttentionBlock, self).__init__() self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) self.conv = conv_block(ch_in, ch_out) self.conv_atten = conv_block(ch_in, ch_out) self.upsample = nn.Upsample(scale_factor=2) def forward(self, x): # print(x.shape) x_res = self.conv(x) # print(x_res.shape) y = self.avg_pool(x) # print(y.shape) y = self.conv_atten(y) # print(y.shape) y = self.upsample(y) # print(y.shape, x_res.shape) return (y * x_res) + y为这段代码添加中文注释

# 定义卷积块模块 class conv_block(nn.Module): def __init__(self, ch_in, ch_out): super(conv_block, self).__init__() self.conv = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1, bias=True), # 3x3卷积层,输入通道数为ch_in,输出通道数为ch_out nn.BatchNorm2d(ch_out), # 批归一化层,对输出特征图进行归一化处理 nn.ReLU(inplace=True), # ReLU激活函数,将负数部分裁剪为0 nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True), # 再次进行3x3卷积操作 nn.BatchNorm2d(ch_out), # 批归一化层 nn.ReLU(inplace=True) # ReLU激活函数 ) def forward(self, x): x = self.conv(x) # 前向传播,进行卷积操作 return x # 定义SqueezeAttentionBlock模块,用于对特征图进行注意力加权 class SqueezeAttentionBlock(nn.Module): def __init__(self, ch_in, ch_out): super(SqueezeAttentionBlock, self).__init__() self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) # 平均池化层,用于对特征图进行降采样 self.conv = conv_block(ch_in, ch_out) # 卷积块,用于对降采样后的特征图进行卷积操作 self.conv_atten = conv_block(ch_in, ch_out) # 卷积块,用于学习注意力权重 self.upsample = nn.Upsample(scale_factor=2) # 上采样层,用于将池化后的特征图恢复到原始尺寸 def forward(self, x): x_res = self.conv(x) # 对原始特征图进行卷积操作 y = self.avg_pool(x) # 对特征图进行降采样 y = self.conv_atten(y) # 对降采样后的特征图进行卷积操作,得到注意力权重 y = self.upsample(y) # 将池化后的特征图恢复到原始尺寸 return (y * x_res) + y # 将注意力权重应用到原始特征图上,得到加权后的特征图

class Linear_ResBlock(nn.Module): def __init__(self, input_size=1024, output_size=256): super(Linear_ResBlock, self).__init__() self.conv1 = nn.Linear(input_size, input_size) self.conv2 = nn.Linear(input_size, output_size) self.conv_res = nn.Linear(input_size, output_size) self.af = nn.ReLU(inplace=True) def forward(self, feature): return self.conv2(self.af(self.conv1(self.af(feature)))) + self.conv_res(feature) 输入的feature是一个(32,1024)的张量,上述报错原因在return这里

根据你提供的代码,问题出现在最后的返回语句上。错误提示中提到的问题与原地修改有关。在这里,你正尝试对`self.conv2(self.af(self.conv1(self.af(feature))))`进行原地修改。 为了解决这个问题,你可以将原地修改的操作改为非原地操作。一种方法是使用`.clone()`方法来创建`self.conv2(self.af(self.conv1(self.af(feature))))`的副本,然后对副本进行操作。修改后的代码如下: ```python def forward(self, feature): x = self.conv1(self.af(feature)) x = self.af(x) x = self.conv2(x) residual = self.conv_res(feature) return x + residual ``` 在这个修改后的代码中,我们将每个操作都存储在一个中间变量中,并使用非原地操作进行修改。最后,将输入`feature`与`residual`相加,得到最终的输出。 通过这种方式,你应该能够避免原地修改错误,并成功运行你的代码。如果还有其他问题,请随时提问。

相关推荐

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

最新推荐

recommend-type

什么是yolov10,简单举例.md

YOLOv10是一种目标检测算法,是YOLO系列算法的第10个版本。YOLO(You Only Look Once)是一种快速的实时目标检测算法,能够在一张图像中同时检测出多个目标。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #
recommend-type

inputstream

Inputstream是Java中用于从输入流中读取数据的抽象类,它是Java I/O类库中的一部分。Inputstream提供了read()和read(byte[] b)等方法,可以从输入流中读取一个字节或一组字节。在Java中,FileInputStream、ByteArrayInputStream和StringBufferInputStream都是Inputstream的子类,用于读取不同类型的输入流。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。