用python编写导入pandas numpy模块并读取文件,并显示前topn行的代码
时间: 2024-01-24 15:02:43 浏览: 162
以下是用Python编写导入Pandas和Numpy模块并读取文件,并显示前topn行的代码:
```python
import pandas as pd
import numpy as np
# 读取csv文件
data = pd.read_csv('filename.csv')
# 显示前topn行
topn = 10
print(data.head(topn))
```
其中,filename.csv为要读取的文件名,需要将其替换为实际文件名。topn为要显示的行数,可以根据需要进行调整。
相关问题
使用python的pandas库怎么实现上述功能
在Python中,可以使用Pandas库结合NumPy来处理电影数据,找到评分最高和评论最多的前几部电影。以下是基本步骤:
1. **导入库**:
```python
import pandas as pd
import numpy as np
```
2. **加载数据**:
假设数据在一个CSV文件中,你可以使用`pd.read_csv()`函数读取:
```python
data = pd.read_csv('movie_data.csv')
```
3. **数据清洗和转换**:
- 检查评分是否为数值,如果不是,可以用`pd.to_numeric()`尝试将其转换为数值:
```python
data['rating'] = pd.to_numeric(data['rating'], errors='coerce') # 将字符串评分转换为数值
```
- 对于评论数量,直接使用`len()`或`str.split()`(如果评论是以逗号分隔的字符串)获取:
```python
data['comment_count'] = data['comments'].apply(lambda x: len(str(x).split(','))) if 'comments' in data.columns else None
```
4. **筛选和排序**:
- 找出评分最高的前n部电影,这里假设n=3:
```python
top_movies = data.sort_values(by=['rating'], ascending=False)[:3]
```
- 同样,找评论最多的前n部:
```python
most_comments_movies = data.sort_values(by=['comment_count'], ascending=False)[:3]
```
5. **结果合并**:
如果以上两部分的结果有交集,只保留评分最高的那几个(如果评论数量一样,优先考虑评分):
```python
combined_results = top_movies.merge(most_comments_movies, how='inner', on='title') # 假设电影名是唯一的
```
6. **结果输出**:
最后打印结果:
```python
print(combined_results[['title', 'rating', 'comment_count']])
```
写一段python代码,读取一个csv文件,该文件没有表头,第一列为时间编号,编号以1,2,3……这样自然数的形式出现,第二列为充电量数值,将该数据集的前70%划分为训练集,其余部分设置为测试集,将该数据集所构成的时间序列进行EMD分解,分解出的子序列中频率最高的3个子序列叠加后用lstm模型进行训练,其余的低频子序列叠加后用svr模型进行训练,然后用stacking方法的集成学习对总体利用lstm模型进行训练,并对总序列进行预测,并打印rmse作为评价指标,并分别绘制训练集的真实值和预测值图片以及测试集的真实值和预测值图片,两张图片的横坐标单位为time/h,纵坐标单位为kwh
以下是代码示例:
```python
import pandas as pd
import numpy as np
from pyhht.visualization import plot_imfs
from pyhht.emd import EMD
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
# 读取csv文件
data = pd.read_csv('data.csv', header=None)
n_samples = len(data)
# 划分训练集和测试集
train_ratio = 0.7
train_size = int(n_samples * train_ratio)
train_data = data.iloc[:train_size, :]
test_data = data.iloc[train_size:, :]
# EMD 分解
emd = EMD()
imfs = emd(train_data[1].values)
plot_imfs(train_data[1].values, imfs)
# 取频率最高的三个 imf 组成新序列,用 LSTM 进行训练
freqs = []
for i in range(len(imfs)):
freqs.append(np.abs(np.fft.fft(imfs[i])))
freqs = np.array(freqs)
freqs_sum = np.sum(freqs, axis=0)
top_freqs_idx = np.argsort(freqs_sum)[-3:]
train_x = []
train_y = []
n_steps = 10
for i in range(n_steps, len(train_data)):
x = []
for j in range(n_steps):
x.append(imfs[top_freqs_idx, i-j])
train_x.append(x)
train_y.append(train_data.iloc[i, 1])
train_x = np.array(train_x)
train_y = np.array(train_y)
model_lstm = Sequential()
model_lstm.add(LSTM(50, activation='relu', input_shape=(n_steps, len(top_freqs_idx))))
model_lstm.add(Dense(1))
model_lstm.compile(optimizer='adam', loss='mse')
early_stopping = EarlyStopping(monitor='loss', patience=5)
model_lstm.fit(train_x, train_y, epochs=50, callbacks=[early_stopping])
# 对低频 imf 进行 SVR 训练
low_freqs_idx = np.argsort(freqs_sum)[:-3]
train_x = []
train_y = []
for i in range(n_steps, len(train_data)):
x = []
for j in range(n_steps):
x.append(imfs[low_freqs_idx, i-j])
train_x.append(x)
train_y.append(train_data.iloc[i, 1])
train_x = np.array(train_x)
train_y = np.array(train_y)
model_svr = SVR()
model_svr.fit(train_x, train_y)
# 集成学习,将 LSTM 和 SVR 结果进行 stacking
test_x = []
test_y = []
for i in range(n_steps, len(test_data)):
x = []
for j in range(n_steps):
x.append(test_data.iloc[i-j, 1])
test_x.append(x)
test_y.append(test_data.iloc[i, 1])
test_x = np.array(test_x)
test_y = np.array(test_y)
lstm_pred = model_lstm.predict(test_x.reshape((-1, n_steps, len(top_freqs_idx))))
svr_pred = model_svr.predict(test_x[:, low_freqs_idx])
stacked_pred = np.hstack((lstm_pred, svr_pred.reshape((-1, 1))))
model_stacked = Sequential()
model_stacked.add(Dense(50, activation='relu', input_dim=3))
model_stacked.add(Dense(1))
model_stacked.compile(optimizer='adam', loss='mse')
model_stacked.fit(stacked_pred, test_y, epochs=50)
# 预测并计算 rmse
pred = model_stacked.predict(stacked_pred)
rmse = np.sqrt(mean_squared_error(test_y, pred))
print('RMSE:', rmse)
# 绘制训练集和测试集真实值和预测值图片
plt.figure(figsize=(10, 5))
plt.plot(train_data[0], train_data[1], label='true')
plt.plot(train_data.iloc[n_steps:, 0], model_stacked.predict(np.hstack((model_lstm.predict(train_x.reshape((-1, n_steps, len(top_freqs_idx)))), model_svr.predict(train_x[:, low_freqs_idx])).reshape((-1, 1))), label='pred')
plt.xlabel('time/h')
plt.ylabel('kwh')
plt.title('Training Set')
plt.legend()
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(test_data[0], test_data[1], label='true')
plt.plot(test_data.iloc[n_steps:, 0], pred, label='pred')
plt.xlabel('time/h')
plt.ylabel('kwh')
plt.title('Test Set')
plt.legend()
plt.show()
```
阅读全文