用python编写导入pandas numpy模块并读取文件,并显示前topn行的代码
时间: 2024-01-24 12:02:43 浏览: 157
以下是用Python编写导入Pandas和Numpy模块并读取文件,并显示前topn行的代码:
```python
import pandas as pd
import numpy as np
# 读取csv文件
data = pd.read_csv('filename.csv')
# 显示前topn行
topn = 10
print(data.head(topn))
```
其中,filename.csv为要读取的文件名,需要将其替换为实际文件名。topn为要显示的行数,可以根据需要进行调整。
相关问题
写一段python代码,读取一个csv文件,该文件没有表头,第一列为时间编号,编号以1,2,3……这样自然数的形式出现,第二列为充电量数值,将该数据集的前70%划分为训练集,其余部分设置为测试集,将该数据集所构成的时间序列进行EMD分解,分解出的子序列中频率最高的3个子序列叠加后用lstm模型进行训练,其余的低频子序列叠加后用svr模型进行训练,然后用stacking方法的集成学习对总体利用lstm模型进行训练,并对总序列进行预测,并打印rmse作为评价指标,并分别绘制训练集的真实值和预测值图片以及测试集的真实值和预测值图片,两张图片的横坐标单位为time/h,纵坐标单位为kwh
以下是代码示例:
```python
import pandas as pd
import numpy as np
from pyhht.visualization import plot_imfs
from pyhht.emd import EMD
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
# 读取csv文件
data = pd.read_csv('data.csv', header=None)
n_samples = len(data)
# 划分训练集和测试集
train_ratio = 0.7
train_size = int(n_samples * train_ratio)
train_data = data.iloc[:train_size, :]
test_data = data.iloc[train_size:, :]
# EMD 分解
emd = EMD()
imfs = emd(train_data[1].values)
plot_imfs(train_data[1].values, imfs)
# 取频率最高的三个 imf 组成新序列,用 LSTM 进行训练
freqs = []
for i in range(len(imfs)):
freqs.append(np.abs(np.fft.fft(imfs[i])))
freqs = np.array(freqs)
freqs_sum = np.sum(freqs, axis=0)
top_freqs_idx = np.argsort(freqs_sum)[-3:]
train_x = []
train_y = []
n_steps = 10
for i in range(n_steps, len(train_data)):
x = []
for j in range(n_steps):
x.append(imfs[top_freqs_idx, i-j])
train_x.append(x)
train_y.append(train_data.iloc[i, 1])
train_x = np.array(train_x)
train_y = np.array(train_y)
model_lstm = Sequential()
model_lstm.add(LSTM(50, activation='relu', input_shape=(n_steps, len(top_freqs_idx))))
model_lstm.add(Dense(1))
model_lstm.compile(optimizer='adam', loss='mse')
early_stopping = EarlyStopping(monitor='loss', patience=5)
model_lstm.fit(train_x, train_y, epochs=50, callbacks=[early_stopping])
# 对低频 imf 进行 SVR 训练
low_freqs_idx = np.argsort(freqs_sum)[:-3]
train_x = []
train_y = []
for i in range(n_steps, len(train_data)):
x = []
for j in range(n_steps):
x.append(imfs[low_freqs_idx, i-j])
train_x.append(x)
train_y.append(train_data.iloc[i, 1])
train_x = np.array(train_x)
train_y = np.array(train_y)
model_svr = SVR()
model_svr.fit(train_x, train_y)
# 集成学习,将 LSTM 和 SVR 结果进行 stacking
test_x = []
test_y = []
for i in range(n_steps, len(test_data)):
x = []
for j in range(n_steps):
x.append(test_data.iloc[i-j, 1])
test_x.append(x)
test_y.append(test_data.iloc[i, 1])
test_x = np.array(test_x)
test_y = np.array(test_y)
lstm_pred = model_lstm.predict(test_x.reshape((-1, n_steps, len(top_freqs_idx))))
svr_pred = model_svr.predict(test_x[:, low_freqs_idx])
stacked_pred = np.hstack((lstm_pred, svr_pred.reshape((-1, 1))))
model_stacked = Sequential()
model_stacked.add(Dense(50, activation='relu', input_dim=3))
model_stacked.add(Dense(1))
model_stacked.compile(optimizer='adam', loss='mse')
model_stacked.fit(stacked_pred, test_y, epochs=50)
# 预测并计算 rmse
pred = model_stacked.predict(stacked_pred)
rmse = np.sqrt(mean_squared_error(test_y, pred))
print('RMSE:', rmse)
# 绘制训练集和测试集真实值和预测值图片
plt.figure(figsize=(10, 5))
plt.plot(train_data[0], train_data[1], label='true')
plt.plot(train_data.iloc[n_steps:, 0], model_stacked.predict(np.hstack((model_lstm.predict(train_x.reshape((-1, n_steps, len(top_freqs_idx)))), model_svr.predict(train_x[:, low_freqs_idx])).reshape((-1, 1))), label='pred')
plt.xlabel('time/h')
plt.ylabel('kwh')
plt.title('Training Set')
plt.legend()
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(test_data[0], test_data[1], label='true')
plt.plot(test_data.iloc[n_steps:, 0], pred, label='pred')
plt.xlabel('time/h')
plt.ylabel('kwh')
plt.title('Test Set')
plt.legend()
plt.show()
```
请给我一份使用机器学习方法构建行业情感词典的python代码,并给出注释
好的,以下是一个使用机器学习方法构建行业情感词典的Python代码,希望对您有所帮助:
首先,我们需要导入必要的库:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
```
然后,我们需要读取行业文本数据集。假设我们有一个名为“industry_data.csv”的数据集,它由两列组成,第一列是文本内容,第二列是情感标签(例如0表示负面情感,1表示中性情感,2表示正面情感)。
```python
# 读取行业文本数据集
data = pd.read_csv('industry_data.csv')
```
接下来,我们需要将数据集拆分为训练集和测试集。这里我们选择使用train_test_split函数来拆分数据集,将80%的数据用于训练,20%的数据用于测试。
```python
# 拆分训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data['text'], data['label'], test_size=0.2, random_state=42)
```
然后,我们需要使用TfidfVectorizer将文本数据转换为数值特征。这里我们选择使用TfidfVectorizer是因为它可以将文本转换为基于TF-IDF的数值特征,这些特征可以用于训练机器学习模型。
```python
# 将文本转换为数值特征
vectorizer = TfidfVectorizer()
train_features = vectorizer.fit_transform(train_data)
test_features = vectorizer.transform(test_data)
```
接下来,我们选择使用KMeans聚类算法将文本数据聚类为若干个簇。KMeans算法是一种无监督学习算法,它可以将输入的数据集聚类为K个簇,其中每个簇代表一种行业情感。
```python
# 使用KMeans算法将文本聚类为K个簇
num_clusters = 3 # 假设我们要将文本聚为3个簇
model = KMeans(n_clusters=num_clusters, random_state=42)
model.fit(train_features)
```
接下来,我们需要为每个簇分配一个情感标签。这里我们选择使用轮廓系数作为评估指标,它可以告诉我们聚类结果的稳定性和紧密度。
```python
# 为每个簇分配情感标签
train_cluster_labels = model.predict(train_features)
train_silhouette_score = silhouette_score(train_features, train_cluster_labels)
print('Train Silhouette Score:', train_silhouette_score)
# 在测试集上评估模型性能
test_cluster_labels = model.predict(test_features)
test_silhouette_score = silhouette_score(test_features, test_cluster_labels)
print('Test Silhouette Score:', test_silhouette_score)
```
最后,我们可以将每个簇中的高权重特征作为该簇的情感词。这里我们选择使用TfidfVectorizer.get_feature_names()方法来获取特征名称,然后根据特征权重排序来选择前N个特征作为情感词。
```python
# 获取每个簇的情感词
for i in range(num_clusters):
cluster_features = train_features[train_cluster_labels == i]
cluster_feature_names = vectorizer.get_feature_names()
cluster_weights = np.asarray(cluster_features.mean(axis=0)).ravel().tolist()
cluster_weights_df = pd.DataFrame({'feature_names': cluster_feature_names, 'weights': cluster_weights})
cluster_weights_df = cluster_weights_df.sort_values(by='weights', ascending=False)
top_n_words = 10 # 假设我们选取每个簇的前10个特征作为情感词
cluster_top_n_words = cluster_weights_df.head(top_n_words)['feature_names'].tolist()
print('Cluster %d:' % i)
print(cluster_top_n_words)
```
完整代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
# 读取行业文本数据集
data = pd.read_csv('industry_data.csv')
# 拆分训练集和测试集
train_data, test_data, train_labels, test_labels = train_test_split(data['text'], data['label'], test_size=0.2, random_state=42)
# 将文本转换为数值特征
vectorizer = TfidfVectorizer()
train_features = vectorizer.fit_transform(train_data)
test_features = vectorizer.transform(test_data)
# 使用KMeans算法将文本聚类为K个簇
num_clusters = 3 # 假设我们要将文本聚为3个簇
model = KMeans(n_clusters=num_clusters, random_state=42)
model.fit(train_features)
# 为每个簇分配情感标签
train_cluster_labels = model.predict(train_features)
train_silhouette_score = silhouette_score(train_features, train_cluster_labels)
print('Train Silhouette Score:', train_silhouette_score)
# 在测试集上评估模型性能
test_cluster_labels = model.predict(test_features)
test_silhouette_score = silhouette_score(test_features, test_cluster_labels)
print('Test Silhouette Score:', test_silhouette_score)
# 获取每个簇的情感词
for i in range(num_clusters):
cluster_features = train_features[train_cluster_labels == i]
cluster_feature_names = vectorizer.get_feature_names()
cluster_weights = np.asarray(cluster_features.mean(axis=0)).ravel().tolist()
cluster_weights_df = pd.DataFrame({'feature_names': cluster_feature_names, 'weights': cluster_weights})
cluster_weights_df = cluster_weights_df.sort_values(by='weights', ascending=False)
top_n_words = 10 # 假设我们选取每个簇的前10个特征作为情感词
cluster_top_n_words = cluster_weights_df.head(top_n_words)['feature_names'].tolist()
print('Cluster %d:' % i)
print(cluster_top_n_words)
```
希望这份代码能对您有所帮助,如果您有任何问题或需求,请随时告诉我。
阅读全文