batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost)解释一下这段原理

时间: 2024-02-19 20:02:16 浏览: 17
这段代码是实现了一个基于深度神经网络(DNN)的强化学习算法中的训练过程。具体来说,它使用了一个记忆回放(memory replay)的方法,从之前的经验中随机选取一批数据用于训练网络。该方法的目的是防止样本之间的相关性和数据的不稳定性对训练造成的影响,从而提高模型的稳定性和泛化能力。 首先,从记忆库中随机选择一批记忆数据,存储在一个二维numpy数组中,其中第一列到第self.net[0]列是输入数据,后面的列是标签。然后,将输入数据和标签转换为PyTorch张量,并使用Adam优化器更新网络的参数,使得损失函数(这里使用的是二分类交叉熵损失函数)不断降低。在训练之前,需要先将优化器的梯度清零(optimizer.zero_grad()),然后使用模型进行前向传播(self.model(h_train))得到输出结果,计算损失函数(criterion(predict, m_train))并进行反向传播(loss.backward()),最后使用优化器更新参数(optimizer.step())。 在训练过程中,每次迭代都会计算出当前的损失值,并将其存储在一个列表中(self.cost_his.append(self.cost))。最后,程序会对训练过程中的一些基本假设进行检查,确保程序的正确性。
相关问题

def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size:#随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost),给这段代码加注释

``` def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size: # 随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) # batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 batch_memory = self.memory[sample_index, :] # h_train是这批记忆的前self.net[0]个元素,即输入数据 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]]) # m_train是这批记忆的后面的元素,即标签。 m_train = torch.Tensor(batch_memory[:, self.net[0]:]) # 是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr, betas=(0.09, 0.999), weight_decay=0.0001) # 是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差, # 通过反向传播算法更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss() # 将模型置于训练状态 self.model.train() # 清空梯度 optimizer.zero_grad() # 得到网络的输出结果 predict = self.model(h_train) # 计算损失函数 loss = criterion(predict, m_train) # 反向传播 loss.backward() # 更新网络参数 optimizer.step() # 记录本轮训练的损失函数值 self.cost = loss.item() # 检查损失是否大于 0 assert (self.cost > 0) # 将损失值记录到 self.cost_his 列表中 self.cost_his.append(self.cost) ``` 这段代码实现了深度神经网络的训练过程,具体细节如下: 1. 根据当前记忆库中存储的数据数量来决定如何进行批量抽样,从而减少数据之间的依赖性。 2. 将抽样得到的一批数据分别作为输入和标签,构成二维的 numpy 数组。 3. 初始化 Adam 优化器和二分类交叉熵损失函数。 4. 将模型置于训练状态,并清空梯度。 5. 将输入数据输入到模型中,得到模型的输出结果。 6. 计算网络的预测结果和真实结果之间的误差,并通过反向传播算法更新网络的参数,使得误差不断降低。 7. 记录本轮训练的损失函数值,并将其添加到 `self.cost_his` 列表中。

batch_size = self.args.batch_size # Training batch size batch_size_val = self.args.batch_size_v # Validation batch size代码意义

这段代码是在定义训练和验证时的batch size大小。batch size是指在一次迭代中,模型所处理的样本数量。在训练过程中,通常会将数据分成若干个batch,每个batch中包含若干个样本,然后模型根据这些样本进行参数更新。batch size越大,模型所处理的数据量就越多,每次迭代的计算时间也会相应变长,但是模型的收敛速度会更快。在这段代码中,self.args.batch_size表示训练过程中的batch size大小,self.args.batch_size_v表示验证过程中的batch size大小。

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

最新推荐

recommend-type

###对华为OD分布式操作系统的详细介绍

华为OD
recommend-type

2110220116吴骏博.py

2110220116吴骏博.py
recommend-type

基于Java的ApplicationPower快速项目生成脚手架设计源码

ApplicationPower项目生成脚手架设计源码:该项目基于Java开发,包含284个文件,主要使用Java和Shell语言。ApplicationPower是一个快速的项目生成脚手架,旨在帮助开发者快速搭建项目框架,包括创建项目结构、配置文件、开发环境等,提高开发效率。
recommend-type

基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的OFDM经典同步算法之一Park算法仿真,附带Park算法经典文献+代码文档+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的imu和视觉里程计 kalman滤波器 进行融合+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。