json_file = open(json_path, "r") class_indict = json.load(json_file)
时间: 2024-05-28 17:12:53 浏览: 25
这段代码的作用是打开一个 JSON 文件,读取其中的内容并将其加载为 Python 对象。其中,`json_path` 是 JSON 文件的路径,`"r"` 表示以只读模式打开文件。`json.load()` 方法将文件中的 JSON 字符串解析为 Python 对象,这里的对象是一个字典。这个字典可以被用来将类别的索引值映射为类别名称。在这里,`class_indict` 变量就是一个包含类别名称的字典。
相关问题
这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵
好的,你的问题是如何将上述代码修改为对指定文件夹下的所有文件进行预测,并绘制混淆矩阵。
要实现这个功能,你需要进行以下几个步骤:
1. 导入必要的包:
```python
import os
import json
import torch
from PIL import Image
from torchvision import transforms
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
from model import convnext_tiny as create_model
```
2. 定义函数 `predict_folder`,用于对指定文件夹下的所有文件进行预测:
```python
def predict_folder(folder_path, model_weight_path, json_path, img_size, num_classes, device):
data_transform = transforms.Compose([
transforms.Resize(int(img_size * 1.14)),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# read class_indict
with open(json_path, "r") as f:
class_indict = json.load(f)
# create model
model = create_model(num_classes=num_classes).to(device)
# load model weights
model.load_state_dict(torch.load(model_weight_path, map_location=device))
model.eval()
y_true = []
y_pred = []
for root, dirs, files in os.walk(folder_path):
for file in files:
img_path = os.path.join(root, file)
assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
img = Image.open(img_path)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
with torch.no_grad():
# predict class
output = torch.squeeze(model(img.to(device))).cpu()
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
y_true.append(class_indict[os.path.basename(root)])
y_pred.append(predict_cla)
return y_true, y_pred
```
这个函数接受五个参数:
- `folder_path`:要预测的文件夹路径。
- `model_weight_path`:模型权重文件路径。
- `json_path`:类别标签文件路径。
- `img_size`:输入图片的大小。
- `num_classes`:分类器的类别数。
- `device`:设备类型。
函数会返回两个列表 `y_true` 和 `y_pred`,分别代表真实标签和预测标签。
3. 加载类别标签:
```python
json_path = './class_indices.json'
assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
with open(json_path, "r") as f:
class_indict = json.load(f)
```
4. 调用 `predict_folder` 函数进行预测:
```python
folder_path = './test'
assert os.path.exists(folder_path), "folder: '{}' dose not exist.".format(folder_path)
y_true, y_pred = predict_folder(folder_path, "./weights/best_model.pth", json_path, 224, 5, device)
```
这里假设要预测的文件夹路径为 `./test`,模型权重文件路径为 `./weights/best_model.pth`,输入图片大小为 224,分类器的类别数为 5。
5. 绘制混淆矩阵:
```python
cm = confusion_matrix(y_true, y_pred)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
xticklabels=list(class_indict.values()), yticklabels=list(class_indict.values()),
title='Confusion matrix',
ylabel='True label',
xlabel='Predicted label')
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
fmt = 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.show()
```
这里使用了 `sklearn.metrics` 中的 `confusion_matrix` 函数进行混淆矩阵的计算。然后使用 `matplotlib` 绘制混淆矩阵图像。
import json from data_define import Record # 先定义一个抽象类用来做顶层设计,确定有那些功能需要实现 class FileReader: def read_data(self) -> list[Record]: """读取文件的数据,读到的每一条数据都转换为Record对象。将它们都封装到list内返回即可""" pass class TextFileReader(FileReader): def __init__(self,path): self.path = path # 定义成员变量记录文件的路径 # 复写(实现抽象方法)父类的方法 def read_data(self) -> list[Record]: f = open(self.path,"r",encoding="UFT-8") record_list: list[Record] = [] for line in f.readlines(): line = line.strip() # 消除读取到的每一行数据中的\n data_list = line.split(",") record = Record(data_list[0],data_list[1],int(data_list[2]),data_list[3]) record_list.append(record) f.close() return record_list class JsonFileReader(FileReader): def __init__(self,path): self.path = path def read_data(self) -> list[Record]: f = open(self.path,"r",encoding="UFT-8") record_list: list[Record] = [] for line in f.readlines(): data_dict = json.load((line)) record = Record(data_dict["data"],data_dict["order_id"],int(data_dict["money"]),data_dict("province")) record_list.append(record) f.close() return record_list if __name__ == '__main__': text_file_reader = TextFileReader("D:/2011年1月销售数据。txt") json_file_reader = JsonFileReader("D:/2011年2月销售数据JSON.txt") list1 = text_file_reader.read_data() list2 = json_file_reader.resa_data() for l in list1: print(l)
这段代码展示了一个简单的多态的例子。在这个例子中,`FileReader`是一个抽象类,定义了一个抽象方法`read_data()`,用于读取文件数据并返回`Record`对象的列表。`TextFileReader`和`JsonFileReader`是`FileReader`的子类,它们分别实现了`read_data()`方法来读取文本文件和JSON文件的数据。
通过多态性,我们可以使用父类类型的引用指向不同的子类对象,并调用相同的方法来实现不同子类对象的不同行为。在主程序中,创建了一个`TextFileReader`对象和一个`JsonFileReader`对象,并调用它们的`read_data()`方法来读取数据并返回`Record`对象的列表。然后,分别遍历这两个列表并打印每个`Record`对象的内容。
多态性的好处是可以在不修改现有代码的情况下,轻松地扩展和添加新的子类实现。它提高了代码的可维护性和灵活性。
阅读全文