pso-xgboost多分类python
时间: 2023-07-24 19:26:00 浏览: 79
您可以使用以下步骤来使用PSO-XGBoost进行多分类问题的建模:
1. 导入所需的库和数据集。
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from psopt import PSO
from sklearn.metrics import accuracy_score
iris = load_iris()
X = iris.data
y = iris.target
```
2. 将数据集分为训练集和测试集。
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. 定义适应度函数(目标函数),即XGBoost模型的准确性。
```python
def fitness_function(position):
model = XGBClassifier(
n_estimators=int(position[0]),
max_depth=int(position[1]),
learning_rate=position[2],
gamma=position[3],
subsample=position[4],
colsample_bytree=position[5],
objective='multi:softmax',
random_state=42,
n_jobs=-1
)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
return accuracy
```
4. 定义模型的搜索空间和PSO算法的参数。
```python
search_space = [
(50, 1000), # n_estimators
(3, 10), # max_depth
(0.01, 1.0), # learning_rate
(0, 1), # gamma
(0.1, 1.0), # subsample
(0.1, 1.0) # colsample_bytree
]
pso = PSO(
search_space=search_space,
fitness_func=fitness_function,
swarm_size=10,
max_iter=50,
verbose=True
)
```
5. 运行PSO算法并获取最佳参数。
```python
best_params, best_fitness = pso.run()
print('Best parameters:', best_params)
print('Best fitness:', best_fitness)
```
6. 使用最佳参数训练XGBoost模型并进行预测。
```python
model = XGBClassifier(
n_estimators=int(best_params[0]),
max_depth=int(best_params[1]),
learning_rate=best_params[2],
gamma=best_params[3],
subsample=best_params[4],
colsample_bytree=best_params[5],
objective='multi:softmax',
random_state=42,
n_jobs=-1
)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
这样您就可以使用PSO-XGBoost进行多分类问题的建模了。
阅读全文