cur_info.popitem() for key in cur_info.keys(): if (key not in dict_info.keys()) or (len(cur_info.keys()) != len(dict_info.keys())): print("*Error*: Computer is not authorized!") sys.exit(1)

时间: 2023-03-26 21:03:07 浏览: 60
这是一段 Python 代码,其中使用了字典的 popitem() 方法和 keys() 方法,以及 if 语句进行判断。如果当前字典中的某个键不在另一个字典中,或者两个字典的键的数量不相等,则会输出错误信息并退出程序。
相关问题

解释一下这段代码 def add_seq_to_prefix_tree(self, root_node, cluster: LogCluster): token_count = len(cluster.log_template_tokens) token_count_str = str(token_count) if token_count_str not in root_node.key_to_child_node: first_layer_node = Node() root_node.key_to_child_node[token_count_str] = first_layer_node else: first_layer_node = root_node.key_to_child_node[token_count_str] cur_node = first_layer_node if token_count == 0: cur_node.cluster_ids = [cluster.cluster_id] return current_depth = 1 for token in cluster.log_template_tokens: if current_depth >= self.max_node_depth or current_depth >= token_count: new_cluster_ids = [] for cluster_id in cur_node.cluster_ids: if cluster_id in self.id_to_cluster: new_cluster_ids.append(cluster_id) new_cluster_ids.append(cluster.cluster_id) cur_node.cluster_ids = new_cluster_ids break if token not in cur_node.key_to_child_node: if self.parametrize_numeric_tokens and self.has_numbers(token): if self.param_str not in cur_node.key_to_child_node: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if self.param_str in cur_node.key_to_child_node: if len(cur_node.key_to_child_node) < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if len(cur_node.key_to_child_node) + 1 < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node elif len(cur_node.key_to_child_node) + 1 == self.max_children: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: cur_node = cur_node.key_to_child_node[token] current_depth += 1

这段代码实现了将一个字符串序列添加到前缀树中的功能。 首先,它检查序列中字符串的数量,并将该数字转换为字符串。然后,它检查根节点的子节点中是否存在一个键为该字符串的子节点。如果没有,则创建一个新节点,并将其添加到根节点的子节点中。如果已存在,则将该节点赋值给 first_layer_node 变量。 接下来,它将当前节点设置为 first_layer_node。如果字符串序列为空,则将当前节点的 cluster_ids 列表设置为包含当前 cluster 的 cluster_id 的唯一元素的列表,然后返回。 否则,它将当前深度设置为 1。然后,它遍历字符串序列中的每个字符串。如果当前深度大于等于 max_node_depth 或者大于等于字符串序列中字符串的数量,则将当前 cluster 的 cluster_id 添加到当前节点的 cluster_ids 列表中,然后退出循环。 否则,它检查当前节点的子节点中是否存在一个键为当前字符串的子节点。如果没有,则创建一个新节点,并将其添加到当前节点的子节点中。如果当前字

对下面代码每一步含义进行注释 def convert_to_doubly_linked_list(self): if not self.root: return None def convert(root): if not root.left and not root.right: return ListNode(root.val) if not root.left: right_head = convert(root.right) right_tail = right_head while right_tail.next: right_tail = right_tail.next cur_node = ListNode(root.val, None, right_head) right_head.prev = cur_node return cur_node if not root.right: left_tail = convert(root.left) left_head = left_tail while left_head.prev: left_head = left_head.prev cur_node = ListNode(root.val, left_tail, None) left_tail.next = cur_node return cur_node left_tail = convert(root.left) right_head = convert(root.right) left_head = left_tail while left_head.prev: left_head = left_head.prev right_tail = right_head while right_tail.next: right_tail = right_tail.next cur_node = ListNode(root.val, left_tail, right_head) left_tail.next = cur_node right_head.prev = cur_node return left_head return convert(self.root) def inorder_traversal(self, root): if not root: return self.inorder_traversal(root.left) print(root.val, end=' ') self.inorder_traversal(root.right) def print_bst(self): self.inorder_traversal(self.root) print() def traverse_doubly_linked_list(self, head): cur_node = head while cur_node: print(cur_node.val, end=' ') cur_node = cur_node.next print() def reverse_traverse_doubly_linked_list(self, head): cur_node = head while cur_node.next: cur_node = cur_node.next while cur_node: print(cur_node.val, end=' ') cur_node = cur_node.prev print()

这段代码是一个二叉搜索树(BST)转化为双向链表的函数,同时提供了打印BST和遍历双向链表的函数。 - `def convert_to_doubly_linked_list(self):`:定义一个将BST转化为双向链表的函数。 - `if not self.root:`:如果BST为空,则返回None。 - `def convert(root):`:定义一个递归函数,将BST转化为双向链表。 - `if not root.left and not root.right:`:如果该节点没有左右子树,返回一个只包含该节点值的ListNode。 - `if not root.left:`:如果该节点没有左子树,将右子树转化为双向链表,并将节点值作为新的头结点,返回该节点。 - `if not root.right:`:如果该节点没有右子树,将左子树转化为双向链表,并将节点值作为新的尾结点,返回该节点。 - `left_tail = convert(root.left)`:将左子树转化为双向链表,并返回左子树的尾结点。 - `right_head = convert(root.right)`:将右子树转化为双向链表,并返回右子树的头结点。 - `left_head = left_tail`:将左子树的头结点设置为左子树的尾结点。 - `while left_head.prev:`:找到左子树双向链表的头结点。 - `right_tail = right_head`:将右子树的尾结点设置为右子树的头结点。 - `while right_tail.next:`:找到右子树双向链表的尾结点。 - `cur_node = ListNode(root.val, left_tail, right_head)`:创建一个新的节点,值为当前节点值,左指针指向左子树双向链表的尾结点,右指针指向右子树双向链表的头结点。 - `left_tail.next = cur_node`:将左子树双向链表的尾结点的右指针指向新节点。 - `right_head.prev = cur_node`:将右子树双向链表的头结点的左指针指向新节点。 - `return left_head`:返回双向链表的头结点。 - `return convert(self.root)`:调用递归函数convert并返回结果。 - `def inorder_traversal(self, root):`:定义一个中序遍历BST的函数。 - `if not root:`:如果该节点为空,则返回。 - `self.inorder_traversal(root.left)`:递归遍历左子树。 - `print(root.val, end=' ')`:输出当前节点的值。 - `self.inorder_traversal(root.right)`:递归遍历右子树。 - `def print_bst(self):`:定义一个打印BST的函数。 - `self.inorder_traversal(self.root)`:调用中序遍历函数遍历BST。 - `print()`:输出一个空行。 - `def traverse_doubly_linked_list(self, head):`:定义一个遍历双向链表的函数。 - `cur_node = head`:将当前节点指向链表的头结点。 - `while cur_node:`:遍历整个链表,直到当前节点为空。 - `print(cur_node.val, end=' ')`:输出当前节点的值。 - `cur_node = cur_node.next`:将当前节点指向下一个节点。 - `print()`:输出一个空行。 - `def reverse_traverse_doubly_linked_list(self, head):`:定义一个逆序遍历双向链表的函数。 - `cur_node = head`:将当前节点指向链表的头结点。 - `while cur_node.next:`:找到链表的尾结点。 - `cur_node = cur_node.next`:将当前节点指向下一个节点。 - `while cur_node:`:逆序遍历整个链表,直到当前节点为空。 - `print(cur_node.val, end=' ')`:输出当前节点的值。 - `cur_node = cur_node.prev`:将当前节点指向上一个节点。 - `print()`:输出一个空行。

相关推荐

void ControlComply::BiaAngleCalculate(vector<XYZ_COOR_S> path_list, CONTROL_PARAM_IN para_in, robot::control_msg& para_out) { float distance_temp; int new_key_point = 0; XYZ_COOR_S xyz_temp; float delta_x[2], delta_y[2]; float min_distance = 100; int size = path_list.size(); float cur_x = para_in.cur_position.x_axis; float cur_y = para_in.cur_position.y_axis; float cur_head = para_in.cur_position.heading; for (int i = 0; i < size; i++) { xyz_temp = path_list.at(i); distance_temp = sqrt((xyz_temp.x_axis - cur_x) * (xyz_temp.x_axis - cur_x) + (xyz_temp.y_axis - cur_y) * (xyz_temp.y_axis - cur_y)); if (min_distance > distance_temp) { min_distance = distance_temp; new_key_point = i % size; } } // std::cout<<"00000000000000000000000000000 key ="<<new_key_point<<std::endl; // std::cout<<"cur = "<<cur_x<<","<<"y = "<<cur_y<<","<<"xyz = "<<xyz_temp.x_axis<<","<<"y = // "<<xyz_temp.y_axis<<std::endl; mKeyPoint = new_key_point; para_out.preCurve = path_list.at(mKeyPoint).curvature; if (path_list.at(path_list.size() - 3).curvature > para_out.preCurve) para_out.preCurve = path_list.at(path_list.size() - 3).curvature; delta_x[0] = cur_x - path_list.at(new_key_point).x_axis; delta_y[0] = cur_y - path_list.at(new_key_point).y_axis; delta_x[1] = path_list.at((new_key_point + 2) % size).x_axis - path_list.at(new_key_point).x_axis; delta_y[1] = path_list.at((new_key_point + 2) % size).y_axis - path_list.at(new_key_point).y_axis; distance_temp = delta_x[1] * delta_y[0] - delta_y[1] * delta_x[0]; if (distance_temp > 0) para_out.biaDistance = sqrtf(delta_x[0] * delta_x[0] + delta_y[0] * delta_y[0]); else para_out.biaDistance = -1 * sqrtf(delta_x[0] * delta_x[0] + delta_y[0] * delta_y[0]); para_out.preAngleDev = 0; }

最新推荐

recommend-type

multisim仿真电路实例700例.rar

multisim仿真电路图
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。