aspp的aspp poing和空洞卷积和普通卷积需不需要归一化,为什么
时间: 2023-11-25 07:34:45 浏览: 96
ASPP(Atrous Spatial Pyramid Pooling)中的ASPP pooling和空洞卷积以及普通卷积需要进行归一化。
归一化可以帮助加速训练过程并提高模型的泛化能力。在深度学习中,归一化通常采用批量归一化(Batch Normalization)或层归一化(Layer Normalization)等技术。对于ASPP中的ASPP pooling和空洞卷积以及普通卷积,这些操作都会改变输入数据的分布,因此需要进行归一化以确保网络的稳定性和准确性。
相关问题
aspp就是空洞卷积吗
ASPP(Atrous Spatial Pyramid Pooling)并不是空洞卷积的代名词,但是ASPP中确实使用了空洞卷积。ASPP是一种用于图像语义分割的网络结构,通过在不同空洞率的卷积层中提取多尺度的特征信息,从而提高图像语义分割的准确率。其中,ASPP模块中最重要的组成部分就是多个空洞卷积层,这些空洞卷积层使用不同的空洞率来捕捉不同尺度的特征信息。因此可以说ASPP中使用了空洞卷积,但ASPP并不等同于空洞卷积。
Deeplabv3+中ASPP模块用1×3卷积和3×1卷积代替3×3卷积完整pytorch代码
以下是使用1x3和3x1卷积代替3x3卷积的Deeplabv3+中ASPP模块的完整PyTorch代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels=256, rates=[1, 6, 12, 18]):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv3a = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv3b = nn.Conv2d(out_channels, out_channels, kernel_size=(1, 3), padding=(0, 1))
self.conv3c = nn.Conv2d(out_channels, out_channels, kernel_size=(3, 1), padding=(1, 0))
self.conv4a = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv4b = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=rates[0], padding=rates[0])
self.conv5a = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv5b = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=rates[1], padding=rates[1])
self.conv6a = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv6b = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=rates[2], padding=rates[2])
self.conv7a = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv7b = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=rates[3], padding=rates[3])
self.conv8 = nn.Conv2d(out_channels * 5, out_channels, kernel_size=1)
def forward(self, x):
x1 = self.conv1(x)
x1 = F.relu(x1)
x2 = F.avg_pool2d(x, kernel_size=x.size()[2:])
x2 = self.conv2(x2)
x2 = F.relu(x2)
x3 = self.conv3a(x)
x3 = self.conv3b(x3)
x3 = self.conv3c(x3)
x3 = F.relu(x3)
x4 = self.conv4a(x)
x4 = self.conv4b(x4)
x4 = F.relu(x4)
x5 = self.conv5a(x)
x5 = self.conv5b(x5)
x5 = F.relu(x5)
x6 = self.conv6a(x)
x6 = self.conv6b(x6)
x6 = F.relu(x6)
x7 = self.conv7a(x)
x7 = self.conv7b(x7)
x7 = F.relu(x7)
out = torch.cat((x1, x2, x3, x4, x5, x6, x7), dim=1)
out = self.conv8(out)
out = F.relu(out)
return out
```
阅读全文