用matlab写一段prime的代码
时间: 2024-03-07 16:49:07 浏览: 120
当然可以,下面是一个用 MATLAB 编写的求质数的代码:
```matlab
function primes = findPrimes(n)
% 求出小于等于 n 的所有质数
primes = [];
for i = 2:n
isPrime = true;
for j = 2:sqrt(i)
if mod(i, j) == 0
isPrime = false;
break
end
end
if isPrime
primes = [primes i];
end
end
end
```
这段代码可以通过输入一个整数 n,返回小于等于 n 的所有质数。如果需要求其它范围内的质数,可以修改输入参数 n 的值即可。
相关问题
用matlab写一段prime算法的代码
以下是使用 MATLAB 编写的求质数的算法代码:
```matlab
function primes = prime(n)
% 返回小于等于n的所有质数
% 输入:n - 正整数
% 输出:primes - 小于等于n的所有质数
if n < 2 % 如果n小于2,返回空
primes = [];
return
end
primes = 2; % 2是最小的质数
for i = 3:n % 从3到n遍历所有数
is_prime = true; % 假设i是质数
for j = 2:sqrt(i) % 从2到i的平方根遍历所有数
if mod(i, j) == 0 % 如果i能被j整除
is_prime = false; % i不是质数
break % 跳出循环
end
end
if is_prime % 如果i是质数
primes = [primes, i]; % 添加到质数列表中
end
end
end
```
该算法的思路是:从2开始遍历到n,对于每个数,判断它是否是质数。如果是质数,则添加到质数列表中。判断一个数是否是质数的方法是:从2到该数的平方根遍历所有数,如果该数能被其中任何一个数整除,则它不是质数。
帮我写一段N值较小的用基础函数实现的NTRU数字签名功能的MATLAB代码,并测试代码
好的,我可以为您写一段NTRU数字签名功能的MATLAB代码,不过在此之前我需要了解一些关于NTRU数字签名的知识,以便于更好地进行编码设计和测试。
NTRU数字签名是一种基于格的密码学签名方案,它是通过对一个向量多项式的系数进行转换和控制,来实现数字签名的安全性和效率。该方案使用了R-LWE(Ring-Learning with Errors)问题,这种问题是基于格的加密中的一种难题,由此实现了数字签名的安全性。
针对您的要求,我参考了已有的NTRU数字签名相关代码进行编写,以下是MATLAB代码,包括了密钥生成、签名过程和验证过程:
```
function [pk, sk] = ntru_keygen(N, p, q)
% N: poly length
% p: plaintext modulus
% q: ciphertext modulus
% holds: holds coefficients of private key polynomial
% f: public key
% generate Gaussian random polynomials f and g
f = generate_poly(N, p);
g = generate_poly(N, p);
% calculate inverse of g
[~,~,inv_g] = poly_gcd_ring(g,p);
% calculate private key
holds = mod(conv(f, inv_g), p);
sk = {holds, g};
% calculate public key
f_q = mod(conv(f,g),q);
pk = {f_q, q};
end
function ret = generate_poly(N, p)
% Generates random polynomial mod p with coefficients in [-p/2, p/2].
ret = randi(p,N,1)-floor(p/2)';
end
function [gcd, x, y] = poly_gcd_ring(a, p)
% compute gcd of the polynomials a and x^p - x in the ring Zp[x]
b = [1, zeros(1, p-1), -1];
[~, r] = poly_div_ring(a, b, p);
if sum(r(1:p)) ~= 0 || numel(r) ~= p
error('In poly_gcd_ring: unexpected result.');
end
[p,q,~,gcd] = poly_ext_euclid_ring(a, b, p);
i = find(sign(gcd) < 0, 1);
gcd = mod(gcd, p);
if ~isempty(i) && ~isempty(gcd) && sign(gcd(i)) < 0
gcd = -gcd;
q = -q;
end
x = q(:,1);
y = q(:,2);
end
function [q,r] = poly_div_ring(a,b,p)
% polynomial division in the ring Zp[x]
% Returns the quotient q and residual r, such that a = b*q + r]
while numel(a) >= numel(b) && ~all(a==0) %a is longer than b
shift = numel(a) - numel(b);
a = mod(a, p);
leading_coeff = mod(b(1) * modinv(b(1), p), p);
a_coeff = mod(a(1) * modinv(b(1), p), p);
quotient_coeff = mod(a_coeff * leading_coeff, p);
quotient = [zeros(1,shift-1), quotient_coeff];
b_shifted = [zeros(1, shift), b];
a = mod(a - mod(conv(b_shifted, quotient), p), p);
end
q = a;
r = mod(a, p);
end
function [p_qinv, qinv] = poly_ext_euclid_ring(a, b, p)
% extended GCD in the polynomial ring Zp[x]
% Given two polynomials a, b and a prime p, returns the Bezout coefficients p and q.
% initialization
p_qinv = {...
{1, zeros(1, numel(b)-1)};
{zeros(1, numel(b)-1), 1};
};
r = {a; b};
while sum(r{end} ~= 0)
q = poly_div_ring(r{end-1}, r{end}, p);
r = [r, q];
p_qinv = [p_qinv, {poly_sub_ring(p_qinv{end-1}, poly_mul_ring(q, p_qinv{end}), p)}];
end
qinv = p_qinv{end-1};
end
function ret = modinv(value, modulus)
% calculate inverse modulo modulus
[~, r, s] = gcd(value, modulus);
if r < 0
r = r + modulus;
end
ret = mod(s, modulus);
if mod(value*ret,modulus) ~=1
error('In modinv: computing incorrect result.');
end
end
function ret = poly_sub_ring(a, b, p)
% polynomial subtraction in the ring Zp[x]
% Returns [a - b] mod ({x^p - x})
ret = mod([a, zeros(1,numel(b)-numel(a))] - [b, zeros(1,numel(a)-numel(b))], p);
end
function ret = poly_mul_ring(a, b)
% polynomial multiplication in the ring Zp[x]
n1 = numel(a) - 1;
n2 = numel(b) - 1;
x = zeros(1, n1+n2+1);
for i = 1:n1+1
for j = 1:n2+1
x(i+j-1) = x(i+j-1) + a(i)*b(j);
end
end
ret = x;
end
function [sig] = ntru_sign(message, sk)
% sk: private key
% f: public key
% p: plaintext modulus
% q: ciphertext modulus
holds = sk{1};
g = sk{2};
% calculate polynomial h from message
h = mod(-1 * message * holds, sk{2});
% add random polynomial e to h
e = generate_poly(numel(h), sk{2});
h = mod(h + e, sk{2});
% calculate inverse of g
[~,~,inv_g] = poly_gcd_ring(g,sk{2});
% calculate signature
sig = mod(conv(h, inv_g), sk{2});
end
function [result] = ntru_verif(message, sig, pk)
% verifies NTRU signature--returns true if signature is valid, false otherwise.
% sk: private key
% f: public key
% p: plaintext modulus
% q: ciphertext modulus
f_q = pk{1};
q = pk{2};
% calculate polynomial a from signature
a = mod(sig .* f_q, q);
% calculate inverse of f
[~,~,inv_f] = poly_gcd_ring(f_q,q);
% calculate polynomial b from message
b = mod(inv_f .* message, q);
% check if a = b
result = isequal(a,b);
end
% Test example
fprintf('Testing NTRU signature\n');
N = 10;
p = 3;
q = 7;
% Generate keys
[pk, sk] = ntru_keygen(N, p, q);
% Set message
message = [1, 0, 1, 1, 0, 1, 0, 0, 1, 1];
% Generate signature
sig = ntru_sign(message, sk);
% Verify signature
verif = ntru_verif(message, sig, pk);
if verif
fprintf('Signature is valid!\n');
else
error('Invalid signature');
end
```
请尝试使用上述代码进行测试,同时也欢迎您提出宝贵的意见和建议,帮助我们改进和优化代码。
阅读全文