self.cross_attention_layers = nn.ModuleList() self.cross_attention_layers.append(CrossAttention(self.shared_channel))

时间: 2024-05-14 11:06:54 浏览: 7
这段代码看起来是在定义一个神经网络模型中的一个模块。其中`CrossAttention`是一个自定义的模块,`self.shared_channel`是从模型构建时传入的参数,作为`CrossAttention`的输入。`nn.ModuleList()`是一个PyTorch中的特殊数据结构,它可以将多个模块组合在一起,方便进行参数的管理和访问。这段代码的作用是将一个`CrossAttention`模块添加到`self.cross_attention_layers`中,以便在模型的前向计算过程中使用它。
相关问题

def setup_layers(self): self.lstm = torch.nn.LSTM( input_size = self.lstm_inputsize, hidden_size = self.lstm_hiddensize, num_layers = self.lstm_layers, batch_first=True, dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout), bidirectional=False )

这段代码使用PyTorch中的`nn.LSTM`构建了一个LSTM层,具体参数如下: - `input_size`:输入特征的维度。 - `hidden_size`:隐藏状态的维度。 - `num_layers`:LSTM层数。 - `batch_first`:如果为True,则输入和输出张量的形状为(batch_size, seq_length, feature_dims);否则,形状为(seq_length, batch_size, feature_dims)。 - `dropout`:如果`num_layers=1`,则不使用dropout;否则,将应用dropout并指定丢弃概率。 - `bidirectional`:是否使用双向LSTM。 需要注意的是,这段代码构建的是单向LSTM,如果需要构建双向LSTM,需要将`bidirectional`参数设置为True,如下所示: ```python self.lstm = torch.nn.LSTM( input_size=self.lstm_inputsize, hidden_size=self.lstm_hiddensize, num_layers=self.lstm_layers, batch_first=True, dropout=(0 if self.lstm_layers == 1 else self.lstm_dropout), bidirectional=True ) ```

self.src_mask = None self.pos_encoder = PositionalEncodingTwo(feature_size) self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.decoder_layer = nn.TransformerDecoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers) self.decoder = nn.Linear(feature_size,1) self.init_weights()

这些代码是Transformer类的构造函数中的一部分,它们定义了Transformer模型的各个组件及其参数。 - `self.src_mask = None`:这是一个源端的掩码,初始值为None。在attention计算中,当某个位置的掩码为1时,表示该位置的信息不应该被考虑,因此可以在构造函数中初始化为None。 - `self.pos_encoder = PositionalEncodingTwo(feature_size)`:这是一个位置编码器,用于将输入序列中的每个位置映射到一个固定的向量表示。这里使用的是PositionalEncodingTwo类,它将位置编码的向量加到输入嵌入中,以便模型可以更好地处理序列数据。 - `self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout)`:这是一个Transformer编码器层,它由多头注意力和前馈神经网络组成。这里使用的是nn.TransformerEncoderLayer类,它的d_model参数表示输入和输出的特征维度,nhead表示多头注意力的头数,dropout表示Dropout概率。 - `self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)`:这是一个Transformer编码器,它由多个编码器层堆叠而成。这里使用的是nn.TransformerEncoder类,它的第一个参数是编码器层,第二个参数是编码器层数。 - `self.decoder_layer = nn.TransformerDecoderLayer(d_model=feature_size, nhead=8, dropout=dropout)`:这是一个Transformer解码器层,它也由多头注意力和前馈神经网络组成。这里使用的是nn.TransformerDecoderLayer类,它的参数与编码器层相同。 - `self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)`:这是一个Transformer解码器,它也由多个解码器层堆叠而成。这里使用的是nn.TransformerDecoder类,它的第一个参数是解码器层,第二个参数是解码器层数。 - `self.decoder = nn.Linear(feature_size,1)`:这是一个线性层,用于将Transformer解码器的输出映射到一个标量值。这里将特征维度(feature_size)的向量映射到一个标量,以便进行回归任务。 - `self.init_weights()`:这是一个初始化权重的函数,用于初始化模型的参数。

相关推荐

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

为以下的每句代码做注释:class ResNet(nn.Module): def init(self, block, blocks_num, num_classes=1000, include_top=True): super(ResNet, self).init() self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x

最新推荐

recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

今天小编就为大家分享一篇对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

主要介绍了关于keras.layers.Conv1D的kernel_size参数使用介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

grpcio-1.63.0-cp38-cp38-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

SQLyog-13.1.3-0.x86Community.exe

SQLyog-13.1.3-0.x86Community
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依