self.cross_attention_layers = nn.ModuleList() self.cross_attention_layers.append(CrossAttention(self.shared_channel))
时间: 2024-05-14 16:06:54 浏览: 123
这段代码看起来是在定义一个神经网络模型中的一个模块。其中`CrossAttention`是一个自定义的模块,`self.shared_channel`是从模型构建时传入的参数,作为`CrossAttention`的输入。`nn.ModuleList()`是一个PyTorch中的特殊数据结构,它可以将多个模块组合在一起,方便进行参数的管理和访问。这段代码的作用是将一个`CrossAttention`模块添加到`self.cross_attention_layers`中,以便在模型的前向计算过程中使用它。
相关问题
解释class GraphMLPEncoder(FairseqEncoder): def __init__(self, args): super().__init__(dictionary=None) self.max_nodes = args.max_nodes self.emb_dim = args.encoder_embed_dim self.num_layer = args.encoder_layers self.num_classes = args.num_classes self.atom_encoder = GraphNodeFeature( num_heads=1, num_atoms=512*9, num_in_degree=512, num_out_degree=512, hidden_dim=self.emb_dim, n_layers=self.num_layer, ) self.linear = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() for layer in range(self.num_layer): self.linear.append(torch.nn.Linear(self.emb_dim, self.emb_dim)) self.batch_norms.append(torch.nn.BatchNorm1d(self.emb_dim)) self.graph_pred_linear = torch.nn.Linear(self.emb_dim, self.num_classes)
这段代码定义了一个名为GraphMLPEncoder的类,该类继承自FairseqEncoder类。在初始化方法中,它首先调用父类的初始化方法,并将dictionary参数设为None。然后,它从args参数中获取一些配置信息,如最大节点数(max_nodes)、嵌入维度(emb_dim)、编码器层数(num_layer)和类别数(num_classes)。
接下来,它创建了一个名为atom_encoder的GraphNodeFeature对象,该对象用于对图节点特征进行编码。它具有一些参数,如头数(num_heads)、原子数(num_atoms)、入度数(num_in_degree)、出度数(num_out_degree)、隐藏维度(hidden_dim)和层数(n_layers)。
然后,它创建了两个列表:linear和batch_norms。这些列表用于存储线性层和批归一化层的实例。它通过循环来创建多个线性层和批归一化层,并将它们添加到相应的列表中。
最后,它创建了一个线性层graph_pred_linear,该层将嵌入维度映射到类别数。这个线性层用于图预测任务中的分类操作。
class HGMN(nn.Module): def __init__(self, args, n_user, n_item, n_category): super(HGMN, self).__init__() self.n_user = n_user self.n_item = n_item self.n_category = n_category self.n_hid = args.n_hid self.n_layers = args.n_layers self.mem_size = args.mem_size self.emb = nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid)) self.norm = nn.LayerNorm((args.n_layers + 1) * self.n_hid) self.layers = nn.ModuleList() for i in range(0, self.n_layers): self.layers.append(GNNLayer(self.n_hid, self.n_hid, self.mem_size, 5, layer_norm=True, dropout=args.dropout, activation=nn.LeakyReLU(0.2, inplace=True))) self.pool = GraphPooling('mean') self.reset_parameters()
这是一个名为 `HGMN` 的类,继承自 `nn.Module`,用于定义一个高阶图记忆网络(Hierarchical Graph Memory Network)。让我逐行解释一下代码的功能:
1. 在类的初始化方法 `__init__(self, args, n_user, n_item, n_category)` 中,接受一些参数:
- `args`:包含一些超参数的对象。
- `n_user`:用户的数量。
- `n_item`:物品的数量。
- `n_category`:类别的数量。
2. 在初始化方法中,通过调用 `super(HGMN, self).__init__()`,使用父类的初始化方法初始化该类。
3. 将传入的参数赋值给类的成员变量。
4. 使用 `nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid))` 创建一个可训练的参数 `emb`,表示嵌入层的权重矩阵。该矩阵的大小为 (n_user + n_item + n_category) x n_hid。
5. 使用 `nn.LayerNorm((args.n_layers + 1) * self.n_hid)` 创建一个层归一化层,用于对输入进行归一化处理。输入的维度为 (args.n_layers + 1) * self.n_hid。
6. 使用 `nn.ModuleList()` 创建一个空的模块列表 `layers`,用于存储多个 GNNLayer 层。
7. 使用循环语句,根据 `self.n_layers` 的值,依次创建 `GNNLayer` 层,并将其添加到 `layers` 列表中。
8. 使用 `GraphPooling('mean')` 创建一个图池化层,用于对图的节点进行池化操作,这里使用均值池化。
9. 调用 `reset_parameters()` 方法,用于初始化模型的参数。
这个类定义了一个层次化图记忆网络模型,其中包含嵌入层、层归一化层、多个 GNNLayer 层以及图池化层。通过传入不同的参数和超参数,可以创建不同配置的 HGMN 模型。
阅读全文