用蒙特卡洛方法计算定积分
时间: 2023-08-04 08:35:55 浏览: 96
蒙特卡罗方法计算积分
下面以计算函数 $f(x)=\frac{1}{1+x^2}$ 在区间 $[0,1]$ 上的定积分为例,展示如何使用蒙特卡洛方法进行计算。
1. 确定积分区间和被积函数:$f(x)=\frac{1}{1+x^2}$,积分区间为 $[0,1]$。
2. 随机生成大量的点,坐标范围应该与积分区间相同。这里我们生成 $n$ 个点。
```python
import random
n = 1000000 # 生成的随机点数量
points = [(random.uniform(0, 1), random.uniform(0, 1)) for i in range(n)]
```
3. 对于每个点,计算其在被积函数下的函数值。
```python
f_points = [(1 / (1 + x**2)) for x, y in points]
```
4. 根据所有点的函数值计算出积分估计值,即积分区间面积与样本点总数的比值。
```python
integral = sum(f_points) / n
result = integral * 1 # 积分区间长度为 1
```
当 $n$ 越大时,计算出的积分值越接近真实积分值。
阅读全文