基于Python的HOG+SVM行人检测预警系统

时间: 2024-01-02 10:02:21 浏览: 29
好的,您的问题是基于Python的HOG SVM行人检测预警系统。这是一个基于计算机视觉的应用,利用HOG(Histogram of Oriented Gradients,方向梯度直方图)和SVM(Support Vector Machine,支持向量机)算法来实现行人检测和预警功能。 具体来说,该系统首先通过摄像头或视频源获取图像,然后采用HOG算法对图像进行特征提取,将图像转换成一组向量。接着,采用SVM算法对这些向量进行分类,将图像中的行人和非行人分别识别出来。最后,根据检测到的行人位置和数量,系统可以发出预警信号,以便及时采取措施。 在Python中,可以使用OpenCV等库来实现HOG SVM行人检测预警系统。需要注意的是,该系统需要足够的计算能力和高质量的训练数据才能达到较好的效果。
相关问题

python实现基于HOG+SVM的行人检测算法

行人检测是计算机视觉中的一个重要应用,HOG+SVM是一种常用的行人检测算法。下面是基于Python实现HOG+SVM行人检测算法的步骤: 1.收集行人数据集。需要有大量的正样本和负样本数据,正样本为行人图片,负样本为非行人图片。 2.提取HOG特征。使用OpenCV中的HOGDescriptor函数,对每张图片提取HOG特征。HOG特征是一种局部特征,可以很好地描述行人的外观特征。 3.训练SVM分类器。将提取的HOG特征作为输入,将正样本标记为1,负样本标记为-1,使用SVM进行训练。可以使用sklearn库中的SVM模型进行训练。 4.行人检测。对新的图片进行行人检测,先使用滑动窗口对图片进行分块,然后对每个分块提取HOG特征,输入到已训练好的SVM模型中进行分类判断。如果分类结果为1,则表示当前分块中可能存在行人,可以将其标记出来。 以上就是基于Python实现HOG+SVM行人检测算法的主要步骤。需要注意的是,该算法的准确率与数据集的质量和数量以及参数的选择有很大关系,需要不断进行调整和优化。

Python+OpenCV+HOG+SVM+行人检测

Python OpenCV HOG SVM 行人检测是使用Python编程语言和OpenCV库来实现行人检测的一种方法。该方法主要利用了HOG(Histogram of Oriented Gradients)特征和SVM(Support Vector Machine)分类器来检测行人。 以下是 Python OpenCV HOG SVM 行人检测的步骤: 1. 收集行人图像数据集并标注。 2. 提取图像中的HOG特征。 3. 利用提取的特征训练SVM分类器。 4. 在测试图像中使用训练好的SVM分类器来检测行人。 具体实现细节如下: 1. 数据集收集和标注 要进行行人检测,首先需要收集行人图像数据集并进行标注。可以使用现有的数据集,例如INRIA行人数据集,或者自己创建数据集。 对于数据集的标注,可以使用图像标注工具来手动标注,例如LabelImg或VGG Image Annotator(VIA)。对于每个行人图像,需要标注行人的位置和大小。 2. 提取HOG特征 OpenCV提供了HOGDescriptor函数来提取图像中的HOG特征。HOG特征是由图像中不同方向的梯度组成的向量,可以有效地表示图像的纹理和形状特征。 代码示例: ``` import cv2 # 创建HOG描述符对象 hog = cv2.HOGDescriptor() # 提取HOG特征 features = hog.compute(image) ``` 其中,image是输入图像,features是提取的HOG特征向量。 3. 训练SVM分类器 在提取HOG特征后,需要使用训练数据集来训练SVM分类器。可以使用OpenCV提供的SVM函数来实现训练。 代码示例: ``` import cv2 # 加载训练数据集和标签 train_data = cv2.imread('train_data.png') train_labels = cv2.imread('train_labels.png') # 创建SVM分类器对象 svm = cv2.ml.SVM_create() # 设置SVM参数 svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)) # 训练SVM分类器 svm.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) ``` 其中,train_data是训练数据集,train_labels是对应的标签。SVM参数可以根据实际情况进行调整。 4. 行人检测 在训练好SVM分类器后,可以在测试图像中使用它来检测行人。可以使用OpenCV提供的detectMultiScale函数来实现检测。 代码示例: ``` import cv2 # 加载测试图像 test_image = cv2.imread('test_image.png') # 创建HOG描述符对象 hog = cv2.HOGDescriptor() # 设置SVM分类器 hog.setSVMDetector(svm.getSupportVectors()) # 行人检测 rects, weights = hog.detectMultiScale(test_image, winStride=(8, 8)) # 绘制检测结果 for (x, y, w, h) in rects: cv2.rectangle(test_image, (x, y), (x + w, y + h), (0, 255, 0), 2) # 显示检测结果 cv2.imshow('result', test_image) cv2.waitKey(0) ``` 其中,test_image是要检测的测试图像。通过设置SVM分类器,可以使用HOG描述符对象的detectMultiScale函数来检测行人。检测结果是一组矩形框,可以使用OpenCV提供的rectangle函数来绘制。最后使用imshow函数显示检测结果。 总结: Python OpenCV HOG SVM 行人检测是一种简单有效的行人检测方法。通过收集数据集,提取HOG特征,训练SVM分类器,可以实现高效的行人检测。可以应用于视频监控、自动驾驶等领域。

相关推荐

最新推荐

HOG+SVM行人检测算法

在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill...因此,HOG+SVM也成为一个里程表式的算法被写入到OpenCV中。在OpenCV2.0之后的版本,都有HOG特征描述算子的API,而至于SVM,早在OpenCV1.0版本就已经集成进去

2024-2030全球及中国PCB接触式探头行业研究及十五五规划分析报告.docx

2024-2030全球及中国PCB接触式探头行业研究及十五五规划分析报告

2023年中国辣条食品行业创新及消费需求洞察报告.pptx

随着时间的推移,中国辣条食品行业在2023年迎来了新的发展机遇和挑战。根据《2023年中国辣条食品行业创新及消费需求洞察报告》,辣条食品作为一种以面粉、豆类、薯类等原料为基础,添加辣椒、调味料等辅料制成的食品,在中国市场拥有着广阔的消费群体和市场潜力。 在行业概述部分,报告首先介绍了辣条食品的定义和分类,强调了辣条食品的多样性和口味特点,满足消费者不同的口味需求。随后,报告回顾了辣条食品行业的发展历程,指出其经历了从传统手工制作到现代化机械生产的转变,市场规模不断扩大,产品种类也不断增加。报告还指出,随着消费者对健康饮食的关注增加,辣条食品行业也开始向健康、营养的方向发展,倡导绿色、有机的生产方式。 在行业创新洞察部分,报告介绍了辣条食品行业的创新趋势和发展动向。报告指出,随着科技的不断进步,辣条食品行业在生产工艺、包装设计、营销方式等方面都出现了新的创新,提升了产品的品质和竞争力。同时,报告还分析了未来可能出现的新产品和新技术,为行业发展提供了新的思路和机遇。 消费需求洞察部分则重点关注了消费者对辣条食品的需求和偏好。报告通过调查和分析发现,消费者在选择辣条食品时更加注重健康、营养、口味的多样性,对产品的品质和安全性提出了更高的要求。因此,未来行业需要加强产品研发和品牌建设,提高产品的营养价值和口感体验,以满足消费者不断升级的需求。 在市场竞争格局部分,报告对行业内主要企业的市场地位、产品销量、市场份额等进行了分析比较。报告发现,中国辣条食品行业竞争激烈,主要企业之间存在着激烈的价格战和营销竞争,产品同质化严重。因此,企业需要加强品牌建设,提升产品品质,寻求差异化竞争的突破口。 最后,在行业发展趋势与展望部分,报告对未来辣条食品行业的发展趋势进行了展望和预测。报告认为,随着消费者对健康、有机食品的需求增加,辣条食品行业将进一步向健康、营养、绿色的方向发展,加强与农业合作,推动产业升级。同时,随着科技的不断进步,辣条食品行业还将迎来更多的创新和发展机遇,为行业的持续发展注入新的动力。 综上所述,《2023年中国辣条食品行业创新及消费需求洞察报告》全面深入地分析了中国辣条食品行业的发展现状、创新动向和消费需求,为行业的未来发展提供了重要的参考和借鉴。随着消费者消费观念的不断升级和科技的持续发展,中国辣条食品行业有望迎来更加广阔的发展空间,实现可持续发展和行业繁荣。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

学习率衰减策略及调参技巧:在CNN中的精准应用指南

# 1. 学习率衰减策略概述 学习率衰减是深度学习中常用的优化技巧,旨在调整模型训练时的学习率,以提高模型性能和收敛速度。在训练迭代过程中,通过逐步减小学习率的数值,模型在接近收敛时可以更精细地调整参数,避免在局部最优点处震荡。学习率衰减策略种类繁多,包括固定衰减率、指数衰减、阶梯衰减和余弦衰减等,每种方法都有适用的场景和优势。掌握不同学习率衰减策略,可以帮助深度学习从业者更好地训练和调优模型。 # 2. 深入理解学习率衰减 学习率衰减在深度学习中扮演着重要的角色,能够帮助模型更快地收敛,并提高训练效率和泛化能力。在本章节中,我们将深入理解学习率衰减的基本概念、原理以及常见方法。 ##

如何让restTemplate call到一个mock的数据

要使用 `RestTemplate` 调用一个模拟的数据,你可以使用 `MockRestServiceServer` 类来模拟服务端的响应。下面是一个示例代码: ```java import org.springframework.http.HttpMethod; import org.springframework.http.HttpStatus; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.test

2023年半导体行业20强品牌.pptx

2023年半导体行业20强品牌汇报人文小库于2024年1月10日提交了《2023年半导体行业20强品牌》的报告,报告内容主要包括品牌概述、产品线分析、技术创新、市场趋势和品牌策略。根据报告显示的数据和分析,可以看出各品牌在半导体行业中的综合实力和发展情况。 在品牌概述部分,文小库对2023年半导体行业20强品牌进行了排名,主要根据市场份额、技术创新能力和品牌知名度等多个指标进行评估。通过综合评估,得出了各品牌在半导体行业中的排名,并分析了各品牌的市场份额变化情况,了解了各品牌在市场中的竞争态势和发展趋势。此外,还对各品牌的品牌影响力进行了分析,包括对行业发展的推动作用和对消费者的影响力等方面进行评估,从品牌知名度和品牌价值两个维度来评判各品牌的实力。 在产品线分析部分,报告详细描述了微处理器在半导体行业中的核心地位,这是主要应用于计算机、手机、平板等智能终端设备中的关键产品。通过对产品线进行详细分析,可以了解各品牌在半导体领域中的产品布局和市场表现,为后续的市场策略制定提供了重要的参考信息。 在技术创新方面,报告也对各品牌在技术创新方面的表现进行了评估,这是半导体行业发展的关键驱动力之一。通过分析各品牌在技术研发、产品设计和生产制造等方面的创新能力,可以评判各品牌在未来发展中的竞争优势和潜力,为品牌策略的制定提供重要依据。 在市场趋势和品牌策略方面,报告分析了半导体行业的发展趋势和竞争格局,为各品牌制定市场策略和品牌推广提供了重要参考。针对未来市场发展的趋势,各品牌需要不断加强技术创新、提升品牌影响力,以及制定有效的市场推广策略,来保持在行业中的竞争优势。 综上所述,在2023年半导体行业20强品牌报告中,通过对各品牌的综合排名、产品线分析、技术创新、市场趋势和品牌策略等方面的评估和分析,展现了各品牌在半导体行业中的实力和发展状态,为半导体行业的未来发展提供了重要的参考和指导。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

量化与剪枝技术在CNN模型中的神奇应用及效果评估

![量化与剪枝技术在CNN模型中的神奇应用及效果评估](https://img-blog.csdnimg.cn/34b16fbb2b55412189fa4338f334e842.png) # 1. 量化与剪枝技术在CNN模型中的概览 在深度学习领域,量化与剪枝技术作为优化模型的重要手段,近年来备受关注。量化技术主要通过减少模型参数的位数,降低模型的计算复杂度,进而提升模型的推理速度。而剪枝技术则通过去除冗余的连接和神经元,减小模型的规模,提高模型的泛化能力和效率。本章将对这两项技术进行综述,为后续章节的深入探讨奠定基础。 # 2. 深入理解量化技术 ### 2.1 量化技术概述 量化技术

已知某一单位向量,现需将坐标轴z轴旋转到该单位向量方向,求旋转映射矩阵

旋转映射矩阵可以通过以下步骤得到: 1. 首先,找到单位向量所在的旋转平面。这个平面由单位向量和一个垂直于它的向量确定。我们可以选择任意一个垂直于单位向量的向量作为旋转平面的法向量。 2. 使用单位向量和选择的法向量来构建一个正交基。这可以通过将单位向量和法向量归一化,并使用叉乘来得到第三个正交向量。 3. 将构建的正交基作为列向量组成一个旋转矩阵。 举例来说,假设单位向量为 v = [x, y, z]。我们可以选择法向量为 [1, 0, 0](如果 v 和 x 轴平行,则选择 [0, 1, 0])。然后,通过叉乘计算第三个正交向量 n = v × [1, 0, 0]。 然后,我们将