y_pred = np.zeros((y_train.shape[0], 3)) for tree in forest: a = [] for j in range(X_train.shape[1]): if np.median(X_train[:, j]) > np.mean(X_train[:, j]): fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.mean(X_train[:, j]), np.median(X_train[:, j]), np.max(X_train[:, j])]) else: fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.median(X_train[:, j]), np.mean(X_train[:, j]), np.max(X_train[:, j])]) a.append(fuzzy_vals) fuzzy_vals = np.array(a).T y_pred += tree.predict_proba(fuzzy_vals) y_pred /= n_trees改成三分类类别预测代码
时间: 2023-06-10 16:09:02 浏览: 113
可以将最后一行的代码改成:
```python
y_pred[:, 0] += tree.predict_proba(fuzzy_vals)[:, 0] / n_trees # 第一类别的预测结果
y_pred[:, 1] += tree.predict_proba(fuzzy_vals)[:, 1] / n_trees # 第二类别的预测结果
y_pred[:, 2] += tree.predict_proba(fuzzy_vals)[:, 2] / n_trees # 第三类别的预测结果
```
其中,`y_pred[:, 0]`表示第一列,即第一类别的预测结果;`y_pred[:, 1]`表示第二列,即第二类别的预测结果;`y_pred[:, 2]`表示第三列,即第三类别的预测结果。
相关问题
y_pred = np.zeros((y_train.shape[0], 3)) for tree in forest: a = [] for j in range(X_train.shape[1]): if np.median(X_train[:, j]) > np.mean(X_train[:, j]): fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.mean(X_train[:, j]), np.median(X_train[:, j]), np.max(X_train[:, j])]) else: fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.median(X_train[:, j]), np.mean(X_train[:, j]), np.max(X_train[:, j])]) a.append(fuzzy_vals) fuzzy_vals = np.array(a).T y_pred += tree.predict_proba(fuzzy_vals) y_pred /= n_trees改成三分类预测
如果你要将这段代码改成三分类预测,你需要将第1行的 `y_pred = np.zeros((y_train.shape[0], 3))` 中的 `3` 改成你的类别数量,比如说是 `y_pred = np.zeros((y_train.shape[0], 3))`,表示有3个不同的类别。
然后,在第9行的 `y_pred /= n_trees` 之前,你需要将 `tree.predict_proba(fuzzy_vals)` 改成 `tree.predict(fuzzy_vals)`。这是因为 `predict_proba` 函数是用于返回每个类别的概率,而 `predict` 函数则返回每个样本的类别标签。
最后,你需要将第9行的 `y_pred /= n_trees` 改成 `y_pred /= n_trees * num_classes`,其中 `num_classes` 是你的类别数量,用来计算每个类别的平均概率。
y_pred = np.zeros(y_train.shape) for tree in forest: a = [] for j in range(X_train.shape[1]): if np.median(X_train[:, j]) > np.mean(X_train[:, j]): fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.mean(X_train[:, j]), np.median(X_train[:, j]), np.max(X_train[:, j])]) else: fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.median(X_train[:, j]), np.mean(X_train[:, j]), np.max(X_train[:, j])]) a.append(fuzzy_vals) fuzzy_vals = np.array(a).T y_pred += tree.predict_proba(fuzzy_vals)[:, 1] y_pred /= n_trees怎么改成分类数据的输出
如果要将这段代码修改为分类数据的输出,需要修改两个地方:
1. 修改y_pred的初始化:分类数据的输出应该是离散的类别标签,而不是概率值。因此,我们需要将y_pred初始化为一个长度为样本数的数组,每个元素的取值为该样本所属的类别标签。
2. 修改y_pred的计算方式:在每棵决策树中,我们需要将输出的概率转换为类别标签,然后将所有决策树的输出取平均值作为最终的预测结果。
下面是修改后的代码:
```python
y_pred = np.zeros(y_train.shape[0])
for tree in forest:
a = []
for j in range(X_train.shape[1]):
if np.median(X_train[:, j]) > np.mean(X_train[:, j]):
fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.mean(X_train[:, j]), np.median(X_train[:, j]), np.max(X_train[:, j])])
else:
fuzzy_vals = fuzz.trapmf(X_train[:, j], [np.min(X_train[:, j]), np.median(X_train[:, j]), np.mean(X_train[:, j]), np.max(X_train[:, j])])
a.append(fuzzy_vals)
fuzzy_vals = np.array(a).T
y_proba = tree.predict_proba(fuzzy_vals)
# 将概率转换为类别标签
y_tree = np.argmax(y_proba, axis=1)
y_pred += y_tree
# 将所有决策树的输出取平均值作为最终的预测结果
y_pred /= n_trees
```
注意,这里假设分类数据的类别标签是从0开始的整数。如果标签不是这种形式,需要根据实际情况进行调整。
阅读全文