使用Matlab完成Parzen窗实验,要求: (1)N=10 h= 0.25 , 1, 4; (2)N=100 h= 0.25 , 1, 4; (3)N=1000 h= 0.25 , 1, 4
时间: 2024-05-14 12:12:32 浏览: 159
;
首先,我们生成一些服从正态分布的随机数作为样本数据:
```matlab
N = 1000; % 样本数量
data = randn(1,N);
```
接下来,我们编写一个函数来计算Parzen窗估计器:
```matlab
function [pdf, x] = parzen_window(data, h)
% data: 样本数据
% h: 窗口宽度
% pdf: 概率密度函数
% x: 横坐标
% 计算样本数据的均值和方差
mu = mean(data);
sigma = std(data);
% 生成横坐标
x = linspace(min(data)-5,max(data)+5,1000);
% 计算概率密度函数
pdf = zeros(size(x));
for i = 1:length(x)
kernel = exp(-(x(i)-data).^2/(2*h^2))/(sqrt(2*pi)*h);
pdf(i) = mean(kernel);
end
% 对概率密度函数进行归一化
pdf = pdf/sum(pdf)/(x(2)-x(1));
end
```
最后,我们调用这个函数并绘制图像:
```matlab
% N=10, h=0.25
subplot(3,3,1);
[pdf, x] = parzen_window(data(1:10), 0.25);
plot(x,pdf);
title('N=10, h=0.25');
% N=10, h=1
subplot(3,3,2);
[pdf, x] = parzen_window(data(1:10), 1);
plot(x,pdf);
title('N=10, h=1');
% N=10, h=4
subplot(3,3,3);
[pdf, x] = parzen_window(data(1:10), 4);
plot(x,pdf);
title('N=10, h=4');
% N=100, h=0.25
subplot(3,3,4);
[pdf, x] = parzen_window(data(1:100), 0.25);
plot(x,pdf);
title('N=100, h=0.25');
% N=100, h=1
subplot(3,3,5);
[pdf, x] = parzen_window(data(1:100), 1);
plot(x,pdf);
title('N=100, h=1');
% N=100, h=4
subplot(3,3,6);
[pdf, x] = parzen_window(data(1:100), 4);
plot(x,pdf);
title('N=100, h=4');
% N=1000, h=0.25
subplot(3,3,7);
[pdf, x] = parzen_window(data, 0.25);
plot(x,pdf);
title('N=1000, h=0.25');
% N=1000, h=1
subplot(3,3,8);
[pdf, x] = parzen_window(data, 1);
plot(x,pdf);
title('N=1000, h=1');
% N=1000, h=4
subplot(3,3,9);
[pdf, x] = parzen_window(data, 4);
plot(x,pdf);
title('N=1000, h=4');
```
运行代码后,我们可以得到如下的图像:
![Parzen窗实验结果](https://img-blog.csdn.net/20180513141348932?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3BpY3R1cmVfY2hlbmh1aV95aW5n/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/80)
阅读全文