我现在有一个已经分过词并且去除过停用词的名为“2015.txt”的文档,其内容为“词:词频”形式的字典。要对“2015.txt”基于TF-IDF抽取关键词,另有一个文档,其中包含了很多篇子文档,每篇子文档都以“本篇文章为:”开头,要将这个文档作为语料库,提取“2015.txt”的关键词,用词在“2015.txt”中出现的次数除以语料库中包含该词的文档数表示tf-idf,请你用python实现,请直接从读取语料库这一步开始
时间: 2023-12-26 19:03:15 浏览: 75
采用python程序设计语言,进行分词,再去掉停用词和标点符号等,生成文档的词典
好的,根据您的要求,我建议您使用Python中的gensim库来实现基于TF-IDF的关键词抽取。下面是代码实现的步骤:
1.读取语料库
```python
from gensim import corpora
from gensim import models
# 读入语料库
corpus = []
with open('corpus.txt', 'r', encoding='utf-8') as f:
doc = []
for line in f:
if line.startswith('本篇文章为:'):
corpus.append(doc)
doc = []
else:
doc.append(line.strip())
corpus.append(doc)
corpus = corpus[1:] # 去掉第一个空文档
```
2.对语料库进行分词,并去除停用词
```python
import jieba
import jieba.analyse
import jieba.posseg as pseg
# 加载停用词表
stop_words = []
with open('stopwords.txt', 'r', encoding='utf-8') as f:
for line in f:
stop_words.append(line.strip())
# 分词
for doc in corpus:
for i in range(len(doc)):
words = []
for word, flag in pseg.cut(doc[i]):
if flag.startswith('n') and word not in stop_words:
words.append(word)
doc[i] = words
```
3.将每篇文档转换为词袋模型,并计算TF-IDF
```python
# 构建词典
dictionary = corpora.Dictionary([word for doc in corpus for word in doc])
# 将每篇文档转换为词袋模型
corpus_bow = [dictionary.doc2bow(doc) for doc in corpus]
# 计算TF-IDF
tfidf_model = models.TfidfModel(corpus_bow)
corpus_tfidf = tfidf_model[corpus_bow]
```
4.抽取关键词
```python
# 读入2015.txt
keywords = {}
with open('2015.txt', 'r', encoding='utf-8') as f:
for line in f:
word, freq = line.strip().split(':')
keywords[word] = int(freq)
# 计算每个关键词的TF-IDF值
for word, freq in keywords.items():
word_id = dictionary.token2id.get(word)
if word_id is None:
continue
tfidf_sum = sum([weight for doc in corpus_tfidf if word_id in [word_id for word_id, weight in doc]])
tfidf = tfidf_sum / len(corpus_tfidf)
keywords[word] = freq * tfidf
# 按照TF-IDF值从大到小排序,取前10个关键词
top_keywords = sorted(keywords.items(), key=lambda x: x[1], reverse=True)[:10]
```
这样就可以得到TF-IDF抽取的关键词了。代码中涉及到的文件路径和停用词表需要根据具体情况进行修改。
阅读全文