DCA特征融合的pytorch实现
时间: 2023-11-12 12:09:13 浏览: 201
以下是DCA特征融合的pytorch实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DCA(nn.Module):
def __init__(self, in_channels):
super(DCA, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x1 = self.conv1(x)
x1 = F.relu(x1)
x1 = self.conv2(x1)
x1 = F.relu(x1)
x2 = self.conv3(x)
x2 = F.relu(x2)
x2 = self.conv4(x2)
x2 = F.relu(x2)
x = x + x1 + x2
return x
```
在这里,我们定义了一个DCA类,该类继承了nn.Module。在类的构造函数中,我们定义了四个卷积层,用于提取特征。在前向方法中,我们首先将输入张量传递到第一个卷积层,然后使用ReLU激活函数进行激活,再将结果传递到第二个卷积层,再次使用ReLU激活函数进行激活。同样,我们使用第三个和第四个卷积层提取另一个不同的特征。最后,我们将这三个特征加在一起,以产生最终特征表示。
阅读全文