import cv2 import numpy as np def CannyThreshold(lowThreshold): detected_edges = cv2.GaussianBlur(gray,(3,3),0) detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size) dst = cv2.bitwise_and(img,img,mask = detected_edges) # just add some colours to edges from original image. cv2.imshow('canny demo',dst) lowThreshold = 0 max_lowThreshold = 300 #最大阈值 ratio = 3 kernel_size = 3 #img = cv2.imread('AAA.jpg', cv2.IMREAD_GRAYSCALE) #注释此行图片不灰度化 img = cv2.imread("D:\xiao.jpg") #注释此行上行代码不注释图片灰度化 gray = cv2.imread("D:\xiao.jpg", cv2.IMREAD_GRAYSCALE) cv2.namedWindow('canny demo') cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold) CannyThreshold(0) # initialization if cv2.waitKey(0) == 27: cv2.destroyAllWindows()
时间: 2024-04-01 13:34:36 浏览: 122
这段代码是使用OpenCV库进行Canny边缘检测的操作,并且使用了滑动条来调节最小阈值。其中,首先对输入的图像进行了高斯模糊处理,然后使用Canny函数进行边缘检测,最后使用bitwise_and函数将原图像和检测出的边缘进行合并并显示出来。滑动条的回调函数是CannyThreshold,用于实时更新最小阈值并重新进行边缘检测和显示。如果按下ESC键,则关闭窗口。
相关问题
分析错误import cv2 import numpy as np def CannyThreshold(lowThreshold): detected_edges = cv2.GaussianBlur(gray,(3,3),0) detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size) dst = cv2.bitwise_and(img,img,mask = detected_edges) # just add some colours to edges from original image. cv2.imshow('canny demo',dst) lowThreshold = 0 max_lowThreshold = 300 #最大阈值 ratio = 3 kernel_size = 3 #img = cv2.imread('AAA.jpg', cv2.IMREAD_GRAYSCALE) #注释此行图片不灰度化 img = cv2.imread("D:\xiao.jpg") #注释此行上行代码不注释图片灰度化 gray = cv2.imread("D:\xiao.jpg", cv2.IMREAD_GRAYSCALE) cv2.namedWindow('canny demo') cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold) CannyThreshold(0) # initialization if cv2.waitKey(0) == 27: cv2.destroyAllWindows()
抱歉,我的回答有误。这段代码是使用OpenCV库进行Canny边缘检测的操作,并且使用了滑动条来调节最小阈值。其中,首先对输入的图像进行了高斯模糊处理,然后使用Canny函数进行边缘检测,最后使用bitwise_and函数将原图像和检测出的边缘进行合并并显示出来。滑动条的回调函数是CannyThreshold,用于实时更新最小阈值并重新进行边缘检测和显示。如果按下ESC键,则关闭窗口。
opencv车道线检测 python做一个界面,并把这个界面和python的代码联系起来
好的,以下是一个简单的实现:
1. 首先,安装所需的库:opencv-python, tkinter。
```
pip install opencv-python
pip install tkinter
```
2. 创建一个GUI界面,包括按钮和一个画布,以显示车道线检测的结果。
```
import tkinter as tk
from PIL import Image, ImageTk
class LaneDetectionGUI:
def __init__(self, master):
self.master = master
self.master.title("Lane Detection")
# Create a canvas widget to display the images
self.canvas = tk.Canvas(self.master, width=640, height=480)
self.canvas.pack()
# Add a button to start the lane detection
self.button = tk.Button(self.master, text="Start Lane Detection", command=self.start_lane_detection)
self.button.pack()
def start_lane_detection(self):
# TODO: Add lane detection code here
pass
root = tk.Tk()
app = LaneDetectionGUI(root)
root.mainloop()
```
3. 在 `start_lane_detection` 方法中添加车道线检测的代码。
```
import cv2
def start_lane_detection(self):
# Load the image
img = cv2.imread("test.jpg")
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply a Gaussian blur
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Apply Canny edge detection
edges = cv2.Canny(blur, 50, 150)
# Apply a region of interest mask
mask = np.zeros_like(edges)
height, width = img.shape[:2]
vertices = np.array([[(0, height), (width/2, height/2), (width, height)]], dtype=np.int32)
cv2.fillPoly(mask, vertices, 255)
masked_edges = cv2.bitwise_and(edges, mask)
# Apply Hough transform to detect lines
rho = 2
theta = np.pi/180
threshold = 100
min_line_length = 50
max_line_gap = 50
lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)
# Draw the detected lines on the image
line_image = np.zeros_like(img)
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(line_image, (x1, y1), (x2, y2), (0, 0, 255), 5)
result = cv2.addWeighted(img, 0.8, line_image, 1, 0)
# Display the result on the canvas
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
result = Image.fromarray(result)
result = ImageTk.PhotoImage(result)
self.canvas.create_image(0, 0, anchor=tk.NW, image=result)
```
4. 运行代码,选择一张图片并点击“Start Lane Detection”按钮,即可在界面上看到检测到的车道线。
完整代码如下:
```
import tkinter as tk
from PIL import Image, ImageTk
import cv2
import numpy as np
class LaneDetectionGUI:
def __init__(self, master):
self.master = master
self.master.title("Lane Detection")
# Create a canvas widget to display the images
self.canvas = tk.Canvas(self.master, width=640, height=480)
self.canvas.pack()
# Add a button to start the lane detection
self.button = tk.Button(self.master, text="Start Lane Detection", command=self.start_lane_detection)
self.button.pack()
def start_lane_detection(self):
# Load the image
img = cv2.imread("test.jpg")
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply a Gaussian blur
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Apply Canny edge detection
edges = cv2.Canny(blur, 50, 150)
# Apply a region of interest mask
mask = np.zeros_like(edges)
height, width = img.shape[:2]
vertices = np.array([[(0, height), (width/2, height/2), (width, height)]], dtype=np.int32)
cv2.fillPoly(mask, vertices, 255)
masked_edges = cv2.bitwise_and(edges, mask)
# Apply Hough transform to detect lines
rho = 2
theta = np.pi/180
threshold = 100
min_line_length = 50
max_line_gap = 50
lines = cv2.HoughLinesP(masked_edges, rho, theta, threshold, np.array([]), min_line_length, max_line_gap)
# Draw the detected lines on the image
line_image = np.zeros_like(img)
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(line_image, (x1, y1), (x2, y2), (0, 0, 255), 5)
result = cv2.addWeighted(img, 0.8, line_image, 1, 0)
# Display the result on the canvas
result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)
result = Image.fromarray(result)
result = ImageTk.PhotoImage(result)
self.canvas.create_image(0, 0, anchor=tk.NW, image=result)
root = tk.Tk()
app = LaneDetectionGUI(root)
root.mainloop()
```
阅读全文