cv.COLOR_BGR2BGRA和cv.COLOR_BGR2RGB区别
时间: 2024-06-06 21:08:58 浏览: 87
这是关于编程领域的问题,两个常用的OpenCV色彩空间转换方式。cv.COLOR_BGR2BGRA将BGR色彩空间转换为BGRA色彩空间,其中A表示透明度;而cv.COLOR_BGR2RGB将BGR色彩空间转换为RGB色彩空间。RGB通常用于电子显示器,而BGR通常用于颜色空间转换和计算机视觉中的图像处理。
相关问题
修改代码,消除错误,错误如下:OpenCV Error: Assertion failed (scn == 3 || scn == 4) in cv::cvtColor, file C:\projects\bytedeco\javacpp-presets\opencv\cppbuild\windows-x86_64\opencv-3.1.0\modules\imgproc\src\color.cpp, line 8000 Exception in thread "main" java.lang.RuntimeException: C:\projects\bytedeco\javacpp-presets\opencv\cppbuild\windows-x86_64\opencv-3.1.0\modules\imgproc\src\color.cpp:8000: error: (-215) scn == 3 || scn == 4 in function cv::cvtColor代码如下cvtColor(src_blur, src_gray, CV_RGB2GRAY); if (debug) { opencv_imgcodecs.imwrite("D:\\PlateLocate\\"+"gray"+".jpg", src_gray); System.out.println("灰度"+"D:\\PlateLocate\\"+"gray"+".jpg"); } public int plateDetect(final Mat src, Vector<Mat> resultVec) { //车牌定位 Vector<Mat> matVec = plateLocate.plateLocate(src); if (0 == matVec.size()) { return -1; } //车牌判断 if (0 != plateJudge.plateJudge(matVec, resultVec)) { return -2; } if (getPDDebug()) { int size = (int) resultVec.size(); for (int i = 0; i < size; i++) { Mat img = resultVec.get(i); //车牌定位图片 String str = "D:\\PlateLocate\\carPlateLocation.jpg"; System.out.println("车牌定位图片"+str); opencv_imgcodecs.imwrite(str, img); } } return 0; } public static String[] multiPlateRecognise(opencv_core.Mat mat) { PlateDetect plateDetect = new PlateDetect(); plateDetect.setPDLifemode(true); Vector<opencv_core.Mat> matVector = new Vector<opencv_core.Mat>(10); if (0 == plateDetect.plateDetect(mat, matVector)) { CharsRecognise cr = new CharsRecognise(); String[] results = new String[matVector.size()]; for (int i = 0; i < matVector.size(); ++i) { String result = cr.charsRecognise(matVector.get(i)); results[i] = result; } return results; } return null; } public static String[] multiPlateRecognise(String imgPath) { opencv_core.Mat src = opencv_imgcodecs.imread(imgPath); return multiPlateRecognise(src); } public static void main(String[] args) { // 多张车牌图片路径 String[] imgPaths = {"res/image/test_image/plate_locate.jpg", "res/image/test_image/test.jpg", "res/image/test_image/plate_detect.jpg", "res/general_test/京A88731.jpg"}; int sum = imgPaths.length; // 总共处理的图片数量 int errNum = 0; // 识别错误的数量 int sumTime = 0; // 总耗时 long longTime = 0; // 最长处理时长 for (int i = 0; i < sum; i++) { opencv_cor
The error "OpenCV Error: Assertion failed (scn == 3 || scn == 4) in cv::cvtColor" indicates that the input image to the cvtColor function is not in the correct format. The function requires an image with 3 or 4 channels, but the input image has a different number of channels. To fix this error, you can check the number of channels in the input image before calling cvtColor function, and convert the image to the correct format if necessary. Here is an example code snippet:
Mat src_blur = new Mat();
Mat src_gray = new Mat();
Imgproc.GaussianBlur(src, src_blur, new Size(3, 3), 0);
if (src.channels() == 3) {
Imgproc.cvtColor(src_blur, src_gray, Imgproc.COLOR_BGR2GRAY);
} else if (src.channels() == 4) {
Imgproc.cvtColor(src_blur, src_gray, Imgproc.COLOR_BGRA2GRAY);
} else {
// handle the error case, e.g. print an error message or throw an exception
}
In this code, we first check the number of channels in the input image (src). If it has 3 channels, we convert it to grayscale using COLOR_BGR2GRAY constant. If it has 4 channels, we use COLOR_BGRA2GRAY constant instead. If the input image has a different number of channels, we can handle the error case appropriately.
cv2.error: C:\ci\opencv_1512688052760\work\modules\imgproc\src\color.cpp:11016: error: (-215) scn == 3 || scn == 4 in function cv::cvtColor
这个错误是由于cv2.cvtcolor()函数中的输入图像通道数不正确引起的。该函数需要一个3通道或4通道的图像作为输入,如果输入图像通道数不是3或4,就会出现这个错误。
你可以检查一下你的输入图像的通道数是否正确,如果不正确,你可以使用cv2.split()函数分离通道,然后再使用cv2.merge()函数将通道合并成3通道或4通道的图像。例如:
```python
import cv2
img = cv2.imread('input.jpg')
if img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 4:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
```
这段代码会检查输入图像的通道数,如果通道数为1,则将其转换为3通道灰度图像;如果通道数为4,则将其转换为3通道RGB图像。然后你就可以在转换后的图像上使用cv2.cvtcolor()函数了。
阅读全文