import random def test(): x=random.randint(0,10) y=random.randint(10,20) return([x,y]) print(test())
时间: 2024-05-03 10:19:35 浏览: 87
这段代码可以生成一个包含两个随机整数的列表,其中第一个整数在0-10范围内,第二个整数在10-20范围内。但是在这段代码中,print语句永远不会被执行,因为它在return语句之后,所以需要将print语句放在return语句之前。修改后的代码如下:
```
import random
def test():
x = random.randint(0, 10)
y = random.randint(10, 20)
return [x, y]
print(test())
```
这将生成一个形如 [x, y] 的列表,其中x和y是随机生成的整数。
相关问题
在下面的代码如何处理import random import datetime def generate_test_paper(n): """ 生成n道加减法,结果在0到100以内的测试卷 """ test_paper = [] for i in range(n): x = random.randint(0, 100) y = random.randint(0, 100) op = random.choice(['+', '-']) if op == '+': result = x + y else: result = x - y test_paper.append((x, op, y, result)) return test_paper def save_test_result(test_result): """ 记录测试结果,包括测试日期和每道题是否正确 """ date = datetime.date.today() with open('test_result.txt', 'a') as f: f.write(str(date) + '\n') for result in test_result: if result: f.write('正确\n') else: f.write('错误\n') f.write('\n') def take_test(): """ 进行测试 """ n = 50 test_paper = generate_test_paper(n) test_result = [] for x, op, y, result in test_paper: print('{} {} {} = '.format(x, op, y), end='') answer = int(input()) if answer == result: print('回答正确') test_result.append(True) else: print('回答错误') test_result.append(False) save_test_result(test_result) if __name__ == '__main__': take_test()
在这个代码中,我们可以在 `take_test()` 函数中加入中断测试的功能,当用户在测试过程中按下 `Ctrl + C` 时,程序会捕获 `KeyboardInterrupt` 异常,并输出当前测试进度以及已经回答的题目数量和正确率等信息。具体代码如下:
```python
import random
import datetime
def generate_test_paper(n):
"""
生成n道加减法,结果在0到100以内的测试卷
"""
test_paper = []
for i in range(n):
x = random.randint(0, 100)
y = random.randint(0, 100)
op = random.choice(['+', '-'])
if op == '+':
result = x + y
else:
result = x - y
test_paper.append((x, op, y, result))
return test_paper
def save_test_result(test_result):
"""
记录测试结果,包括测试日期和每道题是否正确
"""
date = datetime.date.today()
with open('test_result.txt', 'a') as f:
f.write(str(date) + '\n')
for result in test_result:
if result:
f.write('正确\n')
else:
f.write('错误\n')
f.write('\n')
def take_test():
"""
进行测试
"""
n = 50
test_paper = generate_test_paper(n)
test_result = []
correct_count = 0
answer_count = 0
for x, op, y, result in test_paper:
try:
print('{} {} {} = '.format(x, op, y), end='')
answer = int(input())
except KeyboardInterrupt:
# 用户中断测试
print('\n测试中断,已经回答了 {} 道题,正确率为 {:.2f}%'.format(answer_count, correct_count / answer_count * 100))
return
if answer == result:
print('回答正确')
test_result.append(True)
correct_count += 1
else:
print('回答错误')
test_result.append(False)
answer_count += 1
print('测试结束,总共回答了 {} 道题,正确率为 {:.2f}%'.format(answer_count, correct_count / answer_count * 100))
save_test_result(test_result)
if __name__ == '__main__':
take_test()
```
在这个新的代码中,我们将原来的代码复制过来,并在其中加入了 `try-except` 块来捕获 `KeyboardInterrupt` 异常。当用户按下 `Ctrl + C` 中断测试时,程序会跳转到 `except` 块中,在这里输出当前测试进度以及已经回答的题目数量和正确率等信息,并且立即退出 `take_test()` 函数。
如果用户没有中断测试,程序会继续按照原来的逻辑执行,直到测试结束。当测试结束时,程序会输出测试结果,并将测试结果保存到文件中。
代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)
这段代码实现的是k-means聚类算法,但是有一些地方可以改进:
1. 函数kMeans中的createCent参数可以通过修改为直接传入质心的方式来更加灵活。
2. 函数kMeans中的distMeans参数可以修改为scipy库中的距离函数,如scipy.spatial.distance.cdist,来提高计算效率。
3. 函数kMeans中的clusterAssment可以使用pd.DataFrame来进行初始化,这样可以避免使用np.zeros和np.inf来进行初始化。
改进后的代码如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from scipy.spatial.distance import cdist
def randCent(dataSet, k):
"""
随机生成k个质心
"""
n = dataSet.shape[1] # 列数
data_min = dataSet.min()
data_max = dataSet.max()
# 生成k行n列处于data_min到data_max的质心
data_cent = np.random.uniform(data_min, data_max, (k, n))
return data_cent
def kMeans(dataSet, k, createCent=randCent, distMeans=cdist):
"""
k-means聚类算法
"""
centroids = createCent(dataSet, k) # 初始化质心,k即为初始化质心的总个数
result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame()], axis=1, ignore_index=True)
# 将数据进行拼接,横向拼接,即将该容器放在数据集后面
clusterChanged = True
while clusterChanged:
clusterChanged = False
dist = distMeans(dataSet, centroids, metric='euclidean')
clusterAssment = np.argmin(dist, axis=1)
result_set.iloc[:, -1] = pd.Series(clusterAssment)
for i in range(k):
cent_df = result_set[result_set.iloc[:, -1] == i].mean() # 按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值
if not cent_df.empty:
centroids[i] = cent_df.iloc[:-1].values # 当前质心
clusterChanged = True
return centroids, result_set
x = np.random.randint(0, 100, size=100)
y = np.random.randint(0, 100, size=100)
randintnum = pd.concat([pd.DataFrame(x), pd.DataFrame(y)], axis=1, ignore_index=True)
cent_test, result_test = kMeans(randintnum, 3)
plt.scatter(result_test.iloc[:, 0], result_test.iloc[:, 1], c=result_test.iloc[:, -1])
plt.scatter(cent_test[:, 0], cent_test[:, 1], color='red', marker='x', s=100)
```
阅读全文