基于log2(CPM)画3DPCA的R语言代码
时间: 2024-03-04 10:49:33 浏览: 148
以下是基于log2(CPM)画3DPCA的R语言代码:
```
# 加载所需的库
library(DESeq2)
library(plotly)
# 读取数据
counts <- read.table("counts.txt", header=TRUE, row.names=1, check.names=FALSE)
colData <- read.table("colData.txt", header=TRUE, row.names=1, check.names=FALSE)
dds <- DESeqDataSetFromMatrix(countData=counts, colData=colData, design=~group)
dds <- DESeq(dds)
# 计算CPM
cpm <- counts(dds, normalized=TRUE) / colSums(counts(dds)) * 1e6
# 取对数并进行3DPCA
cpm.log <- log2(cpm + 1)
pca <- prcomp(cpm.log, scale=TRUE)
pc1 <- pca$x[,1]
pc2 <- pca$x[,2]
pc3 <- pca$x[,3]
# 绘制3DPCA图
plot_ly(x=pc1, y=pc2, z=pc3, color=colData$group, type="scatter3d", mode="markers")
```
相关问题
已有log2(CPM+1)的基因表达矩阵txt文件,画3DPCA的R语言代码
以下是已有log2(CPM+1)的基因表达矩阵txt文件,画3DPCA的R语言代码:
```
# 加载所需的库
library(plotly)
# 读取数据
data <- read.table("log2_CPM.txt", header=TRUE, row.names=1, check.names=FALSE)
# 进行3DPCA
pca <- prcomp(data, scale=TRUE)
pc1 <- pca$x[,1]
pc2 <- pca$x[,2]
pc3 <- pca$x[,3]
# 绘制3DPCA图
plot_ly(x=pc1, y=pc2, z=pc3, type="scatter3d", mode="markers")
```
其中,log2_CPM.txt 是已经进行log2(CPM+1)转换后的基因表达矩阵,第一列为基因名,其余列为样本的表达值。
已有基因表达矩阵(log2CPM)txt文件和样本分组文件,使用scatterplot3d画3DPCA的R语言代
好的,下面是R语言代码,你可以根据你的数据文件路径进行修改:
```R
# 导入必要的包
library(scatterplot3d)
# 导入基因表达矩阵和样本分组信息
expr_matrix <- read.table("path/to/expr_matrix.txt", header = TRUE, row.names = 1)
sample_info <- read.table("path/to/sample_info.txt", header = TRUE)
# 对基因表达矩阵进行log2转换
expr_matrix_log2 <- log2(expr_matrix + 1)
# 对样本进行分组
groups <- sample_info$group
# 计算3DPCA主成分
pc <- prcomp(expr_matrix_log2, center = TRUE, scale. = TRUE)
pc_scores <- data.frame(pc$x[,1:3])
pc_scores$group <- groups
# 画3DPCA图
pca_plot <- scatterplot3d(pc_scores, color = groups, pch = 19, type = "h", angle = 45, grid = FALSE, box = FALSE, xlab = "PC1", ylab = "PC2", zlab = "PC3")
legend("topright", legend = unique(groups), pch = 19, col = unique(groups), cex = 0.8)
```
这段代码会将3DPCA图绘制在RStudio中,你可以通过鼠标拖动来旋转图像。如果你想要保存图片,可以将画图函数替换为`png()`或`pdf()`函数,然后在绘图结束后使用`dev.off()`命令关闭设备。例如:
```R
png("path/to/pca.png", width = 800, height = 600)
scatterplot3d(pc_scores, color = groups, pch = 19, type = "h", angle = 45, grid = FALSE, box = FALSE, xlab = "PC1", ylab = "PC2", zlab = "PC3")
legend("topright", legend = unique(groups), pch = 19, col = unique(groups), cex = 0.8)
dev.off()
```
阅读全文