M = cv2.getPerspectiveTransform(np.float32(corners), np.float32(destination_corners)) cv2.error: OpenCV(4.5.4-dev) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\imgwarp.cpp:3392: error: (-215:Assertion failed) src.checkVector(2, CV_32F) == 4 && dst.checkVector(2, CV_32F) == 4 in function 'cv::getPerspectiveTransform'
时间: 2023-07-23 12:36:50 浏览: 620
这个错误的意思是输入参数 `src` 和 `dst` 的类型不正确,应该是一个包含四个点的浮点型数组。你需要检查 `corners` 和 `destination_corners` 的类型和内容是否正确。`corners` 和 `destination_corners` 应该是包含四个点的浮点型数组,每个点应该是一个有两个浮点型坐标值的数组。如果 `corners` 和 `destination_corners` 的类型或内容不正确,需要进行相应的更改。
相关问题
# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x
这里给出了一个 PyTorch 实现的 U-Net 模型,并且对代码进行了重构:
1. 将 ConvBlock 提取到了 utils.py 中,以便在 U-Net 中复用。
2. 在 U-Net 模型的 forward 方法中,使用了 ModuleList 对 down-sampling 和 up-sampling 层进行了封装,使得代码更加简洁和易于扩展。
3. 使用了 nn.functional.interpolate 对 feature map 进行了上采样,避免了使用 nn.ConvTranspose2d 带来的一些问题。
4. 在最后的卷积层中,使用了 nn.Sequential 对多个卷积层进行了封装,使得代码更加简洁。
这些重构都是为了提高代码的可读性、可维护性和可扩展性,使得代码更加清晰,易于理解和修改。
import cv2 import numpy as np # 设置棋盘格大小 grid_size = (6, 9) # 设置棋盘格边长 square_size = 0.03 # 创建棋盘格点的坐标数组 obj_points = np.zeros((grid_size[0] * grid_size[1], 3), np.float32) obj_points[:, :2] = np.mgrid[0:grid_size[0], 0:grid_size[1]].T.reshape(-1, 2) * square_size # 创建空数组来存储拍摄到的棋盘格点的坐标 img_points = [] # 拍摄多张图片,并检测棋盘格点 for i in range(10): # 读取图片 img = cv2.imread(f"image_{i}.jpg") # 将图片转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测棋盘格点 ret, corners = cv2.findChessboardCorners(gray, grid_size, None) # 如果检测到棋盘格点,则将其添加到数组中 if ret: img_points.append(corners) # 在图片上绘制棋盘格点 cv2.drawChessboardCorners(img, grid_size, corners, ret) # 显示图片 cv2.imshow(f"Image {i}", img) # 关闭所有窗口 cv2.destroyAllWindows() # 进行相机标定 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None) # 打印相机矩阵和畸变系数 print("Camera matrix:") print(mtx) print("Distortion coefficients:") print(dist)这段代码要想打开一个文件夹怎么改
你可以使用Python的os库来打开文件夹,具体代码如下:
```python
import os
import cv2
import numpy as np
# 设置棋盘格大小
grid_size = (6, 9)
# 设置棋盘格边长
square_size = 0.03
# 创建棋盘格点的坐标数组
obj_points = np.zeros((grid_size[0] * grid_size[1], 3), np.float32)
obj_points[:, :2] = np.mgrid[0:grid_size[0], 0:grid_size[1]].T.reshape(-1, 2) * square_size
# 创建空数组来存储拍摄到的棋盘格点的坐标
img_points = []
# 打开文件夹
folder_path = "your/folder/path"
for filename in os.listdir(folder_path):
# 读取图片
img = cv2.imread(os.path.join(folder_path, filename))
# 将图片转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测棋盘格点
ret, corners = cv2.findChessboardCorners(gray, grid_size, None)
# 如果检测到棋盘格点,则将其添加到数组中
if ret:
img_points.append(corners)
# 在图片上绘制棋盘格点
cv2.drawChessboardCorners(img, grid_size, corners, ret)
# 显示图片
cv2.imshow(f"{filename}", img)
# 关闭所有窗口
cv2.destroyAllWindows()
# 进行相机标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None)
# 打印相机矩阵和畸变系数
print("Camera matrix:")
print(mtx)
print("Distortion coefficients:")
print(dist)
```
你只需要将 `folder_path` 替换成你想要打开的文件夹的路径即可。
阅读全文