请帮我写一个q_learning寻找一阶惯性环节的系数k的最优区间的代码
时间: 2023-11-11 22:07:02 浏览: 107
以下是一个简单的q_learning寻找一阶惯性环节系数k的最优区间的代码示例:
```python
import numpy as np
# 定义状态空间和动作空间
states = [i for i in range(1, 11)]
actions = [i for i in range(1, 6)]
# 初始化Q值表
Q = np.zeros((len(states), len(actions)))
# 定义参数
alpha = 0.1
gamma = 0.9
epsilon = 0.1
num_episodes = 1000
# 定义环节模型
def process(s, a):
k = 0.5 # 初始值
y = 0
for i in range(1, 101):
y = k * y + (1 - k) * np.random.normal(0, 1)
if i == s:
y += a
return y
# 定义epsilon-greedy策略
def epsilon_greedy_policy(state):
if np.random.uniform(0, 1) < epsilon:
action = np.random.choice(actions)
else:
action = np.argmax(Q[state-1])
return action
# 进行q_learning算法
for i in range(num_episodes):
state = np.random.choice(states)
action = epsilon_greedy_policy(state)
while True:
reward = process(state, action)
next_state = state + 1 # 一阶惯性环节的状态转移
next_action = epsilon_greedy_policy(next_state)
Q[state-1][action-1] += alpha * (reward + gamma * Q[next_state-1][next_action-1] - Q[state-1][action-1])
state = next_state
action = next_action
if state == 10: # 终止状态
break
# 寻找最优区间
max_reward = -float('inf')
best_k = None
for k in np.arange(0.1, 1.0, 0.1):
total_reward = 0
for state in states:
for action in actions:
reward = process(state, action)
total_reward += reward - k * action ** 2
if total_reward > max_reward:
max_reward = total_reward
best_k = k
print("最优区间为:[{}, {}]".format(best_k-0.1, best_k+0.1))
```
该代码首先定义了状态空间和动作空间,然后初始化Q值表。接着定义了一阶惯性环节模型和epsilon-greedy策略,并进行了q_learning算法的训练。最后,通过遍历一定区间内的系数k值,计算总奖励并选取最大值作为最优区间的依据。
阅读全文