MAX_ITERATIONS = 300 iteration = 0 while sp_obj <= -tol:#就是如果子问题的目标函数值小于0,人家才会迭代的意思吗?np.abs(reduced_cost) <= TOL or reduced_cost >= 0 route_sequence.append(new_path) pi,obj,include,route_cost=rmp(customer_number,route_sequence) sp_obj,new_path,new_path_cost,x_mat =sp(customer_number,vertex_number,ready_time,due_time,vehicle_capacity, vehicle_number,demand,B,pi) iteration += 1 print('目前的迭代次数为:',iteration) if iteration == MAX_ITERATIONS: print("Reached maximum number of iterations.")这个代码中为什么if函数不起作用
时间: 2024-03-05 13:47:20 浏览: 165
根据你提供的代码,if函数应该是起作用的。但是需要注意的是,if函数仅在while循环结束后执行一次,而不是在每次循环迭代时都执行。因此,如果在循环中想要查看if函数的执行情况,需要在循环内部添加一些打印语句来观察。同时,你可以检查一下MAX_ITERATIONS和tol的值是否合理,以及reduced_cost的计算是否正确。
相关问题
解释这段代码:clear clc warning off; path = pwd; addpath(genpath(path)); dataName{1} = 'flower17'; for name = 1 load(['./',dataName{name},'_Kmatrix']); Y(Y==-1)=2; numclass = length(unique(Y)); numker = size(KH,3); num = size(KH,1); KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH); % KH(KH<0) = 0; options.seuildiffsigma=1e-4; % stopping criterion for weight variation %------------------------------------------------------ % Setting some numerical parameters %------------------------------------------------------ options.goldensearch_deltmax=1e-1; % initial precision of golden section search options.numericalprecision=1e-16; % numerical precision weights below this value % are set to zero %------------------------------------------------------ % some algorithms paramaters %------------------------------------------------------ options.firstbasevariable='first'; % tie breaking method for choosing the base % variable in the reduced gradient method options.nbitermax=500; % maximal number of iteration options.seuil=0; % forcing to zero weights lower than this options.seuilitermax=10; % value, for iterations lower than this one options.miniter=0; % minimal number of iterations options.threshold = 1e-4; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qnorm = 2; [S,Sigma,obj] = graph_minmax(KH, options); S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D; [H,~] = eigs(L, numclass, 'LA'); res= myNMIACC(H,Y,numclass); disp(res); end
这段代码主要是用于处理图像分类数据,并使用图最小最大化算法进行图像分类。下面是对代码的解释:
1. `clear clc warning off;`: 清空命令行窗口并关闭警告信息;
2. `path = pwd; addpath(genpath(path));`: 将当前路径及其子文件夹添加到MATLAB搜索路径中;
3. `dataName{1} = 'flower17';`: 设置图像数据集的名称,此处为flower17;
4. `for name = 1`: 循环遍历数据集中的每个图像;
5. `load(['./',dataName{name},'_Kmatrix']);`: 加载预处理后的图像数据,其中_Kmatrix是图像的相似性矩阵,保存在.mat文件中;
6. `Y(Y==-1)=2;`: 将标签中的-1替换为2,以便后续处理;
7. `numclass = length(unique(Y));`: 计算图像数据集中的类别数;
8. `numker = size(KH,3); num = size(KH,1);`: 计算图像相似性矩阵的大小,其中numker为矩阵的张数,num为矩阵的行数;
9. `KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH);`: 对图像相似性矩阵进行预处理,包括去除异常值、归一化、中心化、标准化等;
10. `options.seuildiffsigma=1e-4;`: 设置图最小最大化算法的参数,即权重变化的停止条件;
11. `options.goldensearch_deltmax=1e-1; options.numericalprecision=1e-16;`: 设置算法的一些数值参数,包括黄金分割法的初始精度和权重的数值精度;
12. `options.firstbasevariable='first'; options.nbitermax=500; options.seuil=0; options.seuilitermax=10; options.miniter=0;`: 设置算法的一些参数,包括选择基础变量的方法、最大迭代次数、权重阈值、迭代次数阈值等;
13. `options.threshold = 1e-4;`: 设置算法的收敛阈值;
14. `qnorm = 2;`: 计算范数,一般默认为2;
15. `[S,Sigma,obj] = graph_minmax(KH, options);`: 使用图最小最大化算法对图像相似性矩阵进行聚类,并返回聚类结果;
16. `S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D;`: 将聚类结果转化为拉普拉斯矩阵,其中D为度矩阵,S1为对称邻接矩阵;
17. `[H,~] = eigs(L, numclass, 'LA');`: 对拉普拉斯矩阵进行特征值分解,获取特征向量;
18. `res= myNMIACC(H,Y,numclass);`: 计算分类精度;
19. `disp(res);`: 显示分类精度结果。
MATLAB函数“l1_homotopy”的代码
“l1_homotopy”函数是一个MATLAB程序包,用于求解一般L1最小化问题,其代码如下:
```matlab
function [x,status,history] = l1_homotopy(A, b, lambda, opts)
% l1_homotopy: Solve L1-regularized least squares problem
% [x,status,history] = l1_homotopy(A, b, lambda, opts)
%
% Solves the problem
% minimize || A*x - b ||_2^2 + lambda * || x ||_1
% using a homotopy method that tracks the solution path as lambda decreases
% from infinity to lambda. The solution is returned in the vector x.
%
% The "status" output gives the status of the solver:
% status = 0: the solution is known to be exact.
% status = 1: the solution is known to be accurate to within the given
% tolerance tol.
% status = 2: the solution is accurate to within a certain tolerance,
% but the algorithm did not converge.
% status = 3: the algorithm did not converge and did not find a solution.
%
% The "history" output is a structure containing the following fields:
% iter: the iteration number
% obj: the objective function value at each iteration
% gap: the duality gap at each iteration
% time: the time elapsed at each iteration
%
% The input "opts" is a structure that can contain the following fields:
% tol: the convergence tolerance (default: 1e-6)
% maxiter: the maximum number of iterations (default: 1000)
% x0: an initial guess for x (default: all zeros)
% print: whether to print progress information (default: 0)
% update: how often to update the progress information (default: 10)
% stopcond: the stopping condition to use (default: 3)
% 1 = || x_k - x_k-1 ||_2 / || x_k ||_2 < tol
% 2 = || x_k - x_k-1 ||_2 < tol
% 3 = duality gap < tol
%
% Example usage:
% n = 1000; p = 200;
% A = randn(p,n); x0 = sprandn(n,1,0.1); b = A*x0 + 0.01*randn(p,1);
% lambda = 0.1;
% [x,status,history] = l1_homotopy(A, b, lambda);
%
% Written by: Justin Romberg, Caltech
% Email: jrom@acm.caltech.edu
% Created: February 2007
t0 = tic;
% Set default options
if nargin < 4
opts = struct();
end
if ~isfield(opts, 'tol')
opts.tol = 1e-6;
end
if ~isfield(opts, 'maxiter')
opts.maxiter = 1000;
end
if ~isfield(opts, 'x0')
opts.x0 = [];
end
if ~isfield(opts, 'print')
opts.print = 0;
end
if ~isfield(opts, 'update')
opts.update = 10;
end
if ~isfield(opts, 'stopcond')
opts.stopcond = 3;
end
% Initialize solver
[m,n] = size(A);
x = zeros(n,1);
if ~isempty(opts.x0)
x = opts.x0;
end
w = x;
v = zeros(m,1);
gamma = 0;
delta = 0;
obj = 0.5 * norm(b - A*x)^2;
gap = 0;
iter = 0;
history.iter = iter;
history.obj = obj;
history.gap = gap;
history.time = 0;
status = 3;
% Compute initial values of quantities
Atb = A'*b;
AtA = A'*A;
norm_w = norm(w);
norm_v = norm(v);
% Main loop
while iter < opts.maxiter
iter = iter + 1;
% Update w and v
w_old = w;
v_old = v;
[w,v,gamma,delta] = l1_homotopy_update(A, b, Atb, AtA, w, v, gamma, delta, lambda);
% Compute objective value and duality gap
obj_old = obj;
obj = 0.5 * norm(b - A*x)^2 + lambda * norm(w,1);
gap = abs(obj - gamma);
% Update x
x_old = x;
x = w;
% Compute convergence criteria
if opts.stopcond == 1
crit = norm(x - x_old, 2) / norm(x, 2);
elseif opts.stopcond == 2
crit = norm(x - x_old, 2);
elseif opts.stopcond == 3
crit = gap;
end
% Save history information
history.iter(iter) = iter;
history.obj(iter) = obj;
history.gap(iter) = gap;
history.time(iter) = toc(t0);
% Print progress information
if opts.print && (mod(iter, opts.update) == 0 || iter == 1 || iter == opts.maxiter)
fprintf('Iteration %d: obj = %0.6g, gap = %0.6g, crit = %0.6g\n', iter, obj, gap, crit);
end
% Check stopping criteria
if crit < opts.tol
status = 0;
break;
end
end
% Set status and final history information
if status == 3
if gap < opts.tol
status = 1;
else
status = 2;
end
end
history.iter = history.iter(1:iter);
history.obj = history.obj(1:iter);
history.gap = history.gap(1:iter);
history.time = history.time(1:iter);
```
这个函数的输入包括:矩阵A和向量b(表示L1最小化问题),正则化参数lambda,以及一些选项opts(包括收敛容差、最大迭代次数、初始猜测、输出选项等)。输出包括:解向量x、状态status和历史记录history。函数中使用了一个“l1_homotopy_update”函数来更新w、v、gamma和delta等变量。主要的求解过程在主循环中进行。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)