详细解读以下代码:#include "sys/types.h" #include "sys/file.h" #include "unistd.h" char r_buf[4]; //读缓冲 char w_buf[4]; //写缓冲 int pipe_fd[2]; pid_t pid1, pid2, pid3, pid4; int producer(int id); int consumer(int id); int main(int argc,char **argv){ if(pipe(pipe_fd)<0){//传输出错 printf("pipe create error \n"); exit(-1); } else{ printf("pipe is created successfully!\n"); //谁占用管道谁进行数据传输 if((pid1=fork())==0) producer(1); if((pid2=fork())==0) producer(2); if((pid3=fork())==0) consumer(1); if((pid4=fork())==0) consumer(2); } close(pipe_fd[0]); //需要加上这两句 close(pipe_fd[1]); //否者会有读者或者写者永远等待 int i,pid,status; for(i=0;i<4;i++) pid=wait(&status); //返回子进程状态 exit(0); } //生产者 int producer(int id){ printf("producer %d is running!\n",id); close(pipe_fd[0]); int i=0; for(i=1;i<10;i++){ sleep(3); if(id==1) //生产者1 strcpy(w_buf,"aaa\0"); else //生产者2 strcpy(w_buf,"bbb\0"); if(write(pipe_fd[1],w_buf,4)==-1) printf("write to pipe error\n"); } close(pipe_fd[1]); printf("producer %d is over!\n",id); exit(id); } //消费者 int consumer(int id){ close(pipe_fd[1]); printf(" producer %d is running!\n",id); if (id==1) //消费者1 strcpy(w_buf,"ccc\0"); else //消费者2 strcpy(w_buf,"ddd\0"); while(1){ sleep(1); strcpy(r_buf,"eee\0"); if(read(pipe_fd[0],r_buf,4)==0) break; printf("consumer %d get %s, while the w_buf is %s\n",id,r_buf,w_buf); } close(pipe_fd[0]); printf("consumer %d is over!\n", id); exit(id); }

时间: 2023-06-27 16:04:40 浏览: 37
这段代码实现了一个生产者-消费者模型,通过管道进行进程间通信。 首先,代码定义了两个缓冲区 r_buf 和 w_buf,一个用于读取数据,一个用于写入数据。然后定义了一个管道 pipe_fd,用于实现进程间通信。 在 main 函数中,通过调用 pipe 函数创建了一个管道,然后通过 fork 函数创建了四个子进程,其中两个子进程为生产者进程,另外两个子进程为消费者进程。每个进程都有一个 id,用于区分是哪个生产者或消费者进程。 然后关闭了管道的读端和写端,使用 wait 函数等待四个子进程结束。 producer 和 consumer 函数分别为生产者和消费者进程的主体部分。在生产者函数中,首先关闭管道的读端,然后循环执行生产操作,即向管道中写入数据。如果是生产者1,则写入字符串 "aaa",否则写入字符串 "bbb"。每次写入数据之后,进程暂停 3 秒钟,然后继续下一轮生产。当生产结束后,关闭管道的写端,并退出进程。 在消费者函数中,首先关闭管道的写端,然后循环执行消费操作,即从管道中读取数据。每次读取到数据之后,通过 printf 函数输出消费者 id、读取到的数据以及写入到管道中的数据。当读取到的数据为空时,退出循环,关闭管道的读端,并退出进程。 需要注意的是,在 main 函数中需要关闭管道的读端和写端,否则可能会导致读者或写者永远等待的情况发生。此外,使用 wait 函数等待子进程结束时,需要在循环中调用该函数,以便能够等待所有子进程结束。
相关问题

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <dirent.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <pwd.h> #include <grp.h> #include <time.h> void shell_ls_l(char *file,struct stat st) { char limi

ted[11]; // 文件权限 mode_t mode = st.st_mode; limitted[0] = (S_ISDIR(mode)) ? "d" : "-"; limitted[1] = (mode & S_IRUSR) ? "r" : "-"; limitted[2] = (mode & S_IWUSR) ? "w" : "-"; limitted[3] = (mode & S_IXUSR) ? "x" : "-"; limitted[4] = (mode & S_IRGRP) ? "r" : "-"; limitted[5] = (mode & S_IWGRP) ? "w" : "-"; limitted[6] = (mode & S_IXGRP) ? "x" : "-"; limitted[7] = (mode & S_IROTH) ? "r" : "-"; limitted[8] = (mode & S_IWOTH) ? "w" : "-"; limitted[9] = (mode & S_IXOTH) ? "x" : "-"; limitted[10] = '\0'; printf("%s ", limitted); // 链接数、所有者、所在组、文件大小、创建时间、文件名 printf("%ld ", (long)st.st_nlink); printf("%s ", getpwuid(st.st_uid)->pw_name); printf("%s ", getgrgid(st.st_gid)->gr_name); printf("%lld ", (long long)st.st_size); char time_buf[20]; strftime(time_buf, 20, "%b %d %H:%M", localtime(&st.st_ctime)); printf("%s ", time_buf); printf("%s\n", file); } int main(int argc, char *argv[]) { DIR *dir; struct dirent *ptr; struct stat st; char path[256]; if (argc == 1) { getcwd(path, 256); dir = opendir(path); while ((ptr = readdir(dir)) != NULL) { if (ptr->d_name[0] == '.') continue; stat(ptr->d_name, &st); shell_ls_l(ptr->d_name, st); } } else if (argc == 2) { if (strcmp(argv[1], "-l") == 0) { getcwd(path, 256); dir = opendir(path); while ((ptr = readdir(dir)) != NULL) { if (ptr->d_name[0] == '.') continue; stat(ptr->d_name, &st); shell_ls_l(ptr->d_name, st); } } else { dir = opendir(argv[1]); while ((ptr = readdir(dir)) != NULL) { if (ptr->d_name[0] == '.') continue; sprintf(path, "%s/%s", argv[1], ptr->d_name); stat(path, &st); shell_ls_l(ptr->d_name, st); } } } else if (argc == 3) { if (strcmp(argv[1], "-l") == 0) { dir = opendir(argv[2]); while ((ptr = readdir(dir)) != NULL) { if (ptr->d_name[0] == '.') continue; sprintf(path, "%s/%s", argv[2], ptr->d_name); stat(path, &st); shell_ls_l(ptr->d_name, st); } } } return 0; } 这是一个简单的实现Linux命令ls -l的程序,可以列出文件的权限、链接数、所有者、所在组、文件大小、创建时间、文件名等信息。

基于以下代码,分析_exit()与exit()在进程退出时的不同行为,结合行缓冲机制,如果调用_exit()函数结束进程并打印父进程信息,应该怎样操作:#include <stdio.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <stdlib.h> #include <fcntl.h> int global=22; char buf[]="the test content!\n"; int mai

n() { int var=88; pid_t pid; int fd; if ((fd=open("testfile",O_CREAT|O_WRONLY|O_TRUNC,0644)) <0) { perror("open error"); exit(1); } if (write(fd,buf,sizeof(buf)-1) != sizeof(buf)-1) { perror("write error"); exit(1); } printf("before fork\n"); if ((pid=fork())<0) { perror("fork error"); exit(1); } else if (pid==0) { global++; var++; printf("child changed\n"); printf("global=%d, var=%d\n",global,var); // exit(0); _exit(0); } if (waitpid(pid,NULL,0)<0) { perror("waitpid error"); exit(1); } printf("parent changed\n"); printf("global=%d, var=%d\n",global,var); exit(0); } 1. _exit()与exit()的区别在于_exit()是直接终止进程,而exit()则是先执行一些清理工作(如调用函数库中的清理函数),然后再终止进程。 2. 在本代码中,如果使用_exit()函数结束进程并打印父进程信息,应该在子进程中添加以下代码: ``` printf("parent process id=%d\n", getppid()); _exit(0); ``` 这样子进程就会直接终止,同时打印出父进程的进程ID。如果使用exit()函数,则需要在子进程中添加清理函数并调用exit()函数来结束进程。

相关推荐

例 2:命名管道通信实例 分别编写读写进程的程序 write.c 和 read.c,两个程序之一在当前目录下创建一个 命名管道“mypipe”,然后 write 向管道写数据,read 从管道读数据,两个进程可 任意顺序运行。 编写 write.c: //write.c #include<stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <error.h> #include <fcntl.h> #include <unistd.h> #define N 256 int main(){ char buf[N]; int fd= open("./mypipe",O_WRONLY|O_CREAT,0666); if(fd!=-1) { printf("FIFO file is opened\n"); } else { perror("open failed"); exit(0); } printf("please input string\n"); scanf("%s",buf); getchar(); if ( write(fd,buf,sizeof(buf))!=-1 ) printf("write successful\n"); else perror("write failed:"); exit(EXIT_SUCCESS); } 编写 read.c: //read.c #include<stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <error.h> #include <fcntl.h> #include <unistd.h> #define N 256 int main(){ int fd= open("./mypipe",O_RDONLY|O_CREAT,0666); char buf[N]; if(fd!=-1) { printf("FIFO file is opened\n"); } else { perror("open failed"); exit(0); } if ( read(fd,buf,N )!=-1 ) printf("I received data %s\n",buf); else perror("read error:"); exit(EXIT_SUCCESS); } 运行方式:打开 2 个终端,分别运行读写进程。 请完成以下练习与回答问题: 练习 1:改写本例,使得写进程可以不断的向管道文件写,读进程可以不断的读, 思考如何控制读写顺序。 练习 2:本例中用于管道通信的是一个普通文件,请用 mkfifo 命令或 mkfifo( )函 数创建一个标准管道文件改写本例,查看一下通过管道文件不断读写有什么不同? 问题 1:请说明匿名管道与命名管道在创建方式上有何不同?为什么说匿名管道 只能用于有亲缘关系的进程间进行通信?

#include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/ioctl.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include "scull.h" void write_proc(void); void read_proc(void); int main(int argc, char **argv){ if(argc == 1){ puts( "Usage: scull_test [write|read]"); exit(0); } if( !strcmp(argv[1],"write")) write_proc(); else if(!strcmp(argv[1],"read")) read_proc(); else puts( "scull_test: invalid command! "); return 0; } void write_proc(){ int fd, len,quit = 0; char buf[ 100]; fd = open(DEVICE_FILE,O_WRONLY); if(fd <= 0){ printf("Error opening device file %s for writing!\n",DEVICE_FILE); exit(1); } printf( "input 'exit' to exit!"); while( !quit) { printf( "\n write>> "); fgets(buf, 100,stdin); if(!strcmp(buf, "exit\n")) quit =1; while(ioctl(fd,SCULL_QUERY_NEW_MSG)) usleep(1000); len=write(fd, buf, strlen(buf)); if(len<0){ printf( "Error writing to device %s !\n" ,SCULL_NAME); close(fd); exit(1); } printf("%d bytes written to device %s!\n",len- 1,SCULL_NAME); } close(fd); } void read_proc(){ printf("\n read<< "); while(!ioctl(fd,SCULL_QUERY_NEW_MSG)) usleep(1000);// get the msg length len=ioctl(fd, SCULL_QUERY_MSG_LENGTH, NULL); if(len){ if(buf!=NULL) free(buf); buf = malloc(sizeof(char)*(len+1)); len = read(fd, buf, len); if(len < 0){ printf("Error reading from device %s!", SCULL_NAME); }else{ if(!strcmp(buf,"exit\n")){ ioctl(fd, SCULL_RESET); // reset quit = 1; printf("%s\n",buf); }else printf("%s\n",buf); } } free(buf); close(fd); }

根据以下代码内容进行补充:#include<semaphore.h> #include #include<stdio.h> #include<unistd.h> #include<sys/types.h> #include<sys/stat.h> #include<fcntl.h> #include<stdlib.h> #include<string.h> sem_t semB,semA;//创建两个信号量 int p=0; int fd=0; //A void * AthreadFunction(void * arg) { int retvalue; unsigned char buf=1; while(1) { sem_wait(&semA);//等待信号量发送 retvalue = write(fd, &buf, sizeof(unsigned char)); if(retvalue < 0){ printf("LED Control Failed!\r\n"); close(fd); return ; } // 请自行添加点亮 LED 函数 printf("LED ON+++++\r\n"); sleep(5); sem_post(&semB);//发送信号量 } } //B void * BthreadFunction(void * arg) { int retvalue; unsigned char buf=0; while(1) { sem_wait(&semB); retvalue = write(fd, &buf, sizeof(unsigned char)); if(retvalue < 0){ printf("LED Control Failed!\r\n"); close(fd); return; } // 请自行添加 LED 关闭函数 printf("LED OFF-----\r\n"); sleep(5); sem_post(&semA); } } int main() { pthread_t pid[2]; int retvalue; char *filename="/dev/led"; /* 打开 led 驱动 */ fd = open(filename, O_RDWR); if(fd < 0){ printf("file %s open failed!\r\n", filename); return -1; } sem_init(&semB,0,0);//初始化信号量 sem_init(&semA,0,0); sem_post(&semA);//先发送一个指定的信号量,不然两个线程会阻塞的等待信号量的 到来 pthread_create(&pid[0],NULL,AthreadFunction,NULL);//创建线程pthread_create(&pid[1],NULL,BthreadFunction,NULL); pthread_join(pid[0],NULL);//线程的回收,避免僵尸线程pthread_join(pid[1],NULL); sem_destroy(&semB);//使用结束后要把信号量给回收 sem_destroy(&semA); retvalue = close(fd); /* 关闭文件 */ // 材料 LED 循环闪烁 10 次后打印自己的姓名+学号,将打印信息截图作为实验报告的支撑 if(retvalue < 0){ printf("file %s close failed!\r\n", filename); return -1; } return 0; }

#include <unistd.h> #include <sys/types.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <signal.h> //下一步时间间隔 #define TIME_NEXT 50 //定义信号,此处直接使用系统信号,项目中可根据需要自定义信号值#define SIG_UI_QUIT35 #define SIG_PHONE_QUIT 36 #define SIG_UI_QUIT 35 //定义通话状态 enum TASK_PHONE_STATE { TASK_PHONE_STATE_NONE = 0, TASK_PHONE_STATE_RING, TASK_PHONE_STATE_TALK, TASK_PHONE_STATE_HANGUP, }; int phone_state = TASK_PHONE_STATE_NONE; //设置通话状态 void set_state(int state) { phone_state = state; } //获取通话状态 int get_state(void) { return phone_state; } int get_ui_pid() { int pid = -1; FILE *fp = NULL; char buf[12] = {0}; //打开管道,执行 shell 命令查找进程名为task_ui_sig 的pid fp = popen("ps -e I grep \'task_ui_sig\' | awk \'{print $1}\'", "r"); fgets(buf, sizeof(buf), fp); if (strlen(buf) > 0) { pid = atoi(buf); } return pid; } //信号处理函数 void sig_deal(int sig) { if (sig == SIG_UI_QUIT) { printf("Task ui hangup!\n"); set_state(TASK_PHONE_STATE_HANGUP); } } int main(void) { int time = 0; //设置SIG UI QUIT信号处理函数 signal(SIG_UI_QUIT, sig_deal); while (1) { /*模拟与其他用户处理通信协议,每隔5s进入下一状态*/ time++; if (time >= TIME_NEXT) { time = 0; if (get_state() == TASK_PHONE_STATE_RING) { set_state(TASK_PHONE_STATE_TALK); } else if (get_state() == TASK_PHONE_STATE_TALK) { set_state(TASK_PHONE_STATE_HANGUP); } else { set_state(TASK_PHONE_STATE_RING); } printf("Current state is %d!\n", get_state()); /*若当前通话状态为挂断,则退出任务,并发送信号给UI*/ if (get_state() == TASK_PHONE_STATE_HANGUP) { if (get_ui_pid() > 0) { kill(get_ui_pid(), SIG_UI_QUIT); printf("Send quit msg!\n"); } break; } usleep(100 * 1000); } return 0; } }这段代码有什么bug

运行以下代码 #include "sys/types.h" #include "sys/file.h" #include "unistd.h" char r_buf[4]; //读缓冲 char w_buf[4]; //写缓冲 int pipe_fd[2]; pid_t pid1, pid2, pid3, pid4; int producer(int id); int consumer(int id); int main(int argc,char **argv){ if(pipe(pipe_fd)<0){//传输出错 printf("pipe create error \n"); exit(-1); } else{ printf("pipe is created successfully!\n"); //谁占用管道谁进行数据传输 if((pid1=fork())==0) producer(1); if((pid2=fork())==0) producer(2); if((pid3=fork())==0) consumer(1); if((pid4=fork())==0) consumer(2); } close(pipe_fd[0]); //需要加上这两句 close(pipe_fd[1]); //否者会有读者或者写者永远等待 int i,pid,status; for(i=0;i<4;i++) pid=wait(&status); //返回子进程状态 exit(0); } //生产者 int producer(int id){ printf("producer %d is running!\n",id); close(pipe_fd[0]); int i=0; for(i=1;i<10;i++){ sleep(3); if(id==1) //生产者1 strcpy(w_buf,"aaa\0"); else //生产者2 strcpy(w_buf,"bbb\0"); if(write(pipe_fd[1],w_buf,4)==-1) printf("write to pipe error\n"); } close(pipe_fd[1]); printf("producer %d is over!\n",id); exit(id); } //消费者 int consumer(int id){ close(pipe_fd[1]); printf(" producer %d is running!\n",id); if (id==1) //消费者1 strcpy(w_buf,"ccc\0"); else //消费者2 strcpy(w_buf,"ddd\0"); while(1){ sleep(1); strcpy(r_buf,"eee\0"); if(read(pipe_fd[0],r_buf,4)==0) break; printf("consumer %d get %s, while the w_buf is %s\n",id,r_buf,w_buf); } close(pipe_fd[0]); printf("consumer %d is over!\n", id); exit(id); }

最新推荐

recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于AT89C51单片机的可手动定时控制的智能窗帘设计.zip-11

压缩包构造:程序、仿真、原理图、pcb、任务书、结构框图、流程图、开题文档、设计文档、元件清单、实物图、焊接注意事项、实物演示视频、运行图片、功能说明、使用前必读。 仿真构造:AT89C51,LCD液晶显示器,5功能按键,步进器,灯。 代码文档:代码1024行有注释;设计文档18819字。 功能介绍:系统具有手动、定时、光控、温控和湿度控制五种模式。在手动模式下,两个按钮可控制窗帘的开合;定时模式下,根据预设时间自动开合窗帘;光控模式下,当光照超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;温控模式下,当温度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;湿度控制模式下,当湿度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭。按钮可用于调节阈值、选择模式、设置时间等。
recommend-type

007_insert_seal_approval_cursor.sql

007_insert_seal_approval_cursor.sql
recommend-type

springboot072基于JavaWeb技术的在线考试系统设计与实现.zip

java基于SpringBoot+vue在线考试系统源码 带毕业论文+PPT 【资源说明】 1、开发环境:SpringBoot框架;内含Mysql数据库;VUE技术;内含说明文档 2、该资源包括项目的全部源码,下载可以直接使用! 3、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 4、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。